Appl Opt. 2022 Sep 10;61(26):7595-7601. doi: 10.1364/AO.463017.
Face recognition plays an essential role for the biometric authentication. Conventional lens-based imagery keeps the spatial fidelity with respect to the object, thus, leading to the privacy concerns. Based on the point spread function engineering, we employed a coded mask as the encryption scheme, which allows a readily noninterpretable representation on the sensor. A deep neural network computation was used to extract the features and further conduct the identification. The advantage of this data-driven approach lies in that it is neither necessary to correct the lens aberration nor revealing any facial conformity amid the image formation chain. To validate the proposed framework, we generated a dataset with practical photographing and data augmentation by a set of experimental parameters. The system has the capability to adapt a wide depth of field (DoF) (60-cm hyperfocal distance) and pose variation (0 to 45 deg). The 100% recognition accuracy on real-time measurement was achieved without the necessity of any physics priors, such as the encryption scheme.
人脸识别在生物特征认证中起着至关重要的作用。传统的基于镜头的成像技术保持了对物体的空间保真度,因此引起了隐私问题的关注。基于点扩散函数工程,我们采用编码掩模作为加密方案,这允许在传感器上进行易于解释的表示。通过深度神经网络计算来提取特征并进一步进行识别。这种数据驱动方法的优势在于,在图像形成链中既不需要校正镜头像差,也不需要揭示任何面部一致性。为了验证所提出的框架,我们通过一组实验参数生成了具有实际拍摄和数据增强的数据集。该系统能够适应宽景深(DoF)(60 厘米超焦距)和姿势变化(0 到 45 度)。在没有任何物理先验的情况下,例如加密方案,我们实现了实时测量的 100%识别准确率。