Guessoum Assia, Hajj Tony, Bouaziz Djamila, Chabrol Gregoire, Pfeiffer Pierre, Demagh Nacer-E, Lecler Sylvain
Appl Opt. 2022 Sep 10;61(26):7741-7747. doi: 10.1364/AO.462961.
A polymer-based fiber micro-lens molding fabrication technique with, to our knowledge, unprecedented performances is presented along with its advantages and applications. This technique is a fast and affordable tool to achieve a wide variety of possible spherical and aspherical micro-lens sizes and curvatures. The alignment of the micro-lens mold with the fiber core receiving the lens is done optically, which allows high precision. Using the proposed technique, different micro-lenses are fabricated. Then the output beams of two different micro-lenses on single-mode fibers are characterized. Fiber micro-lenses with curvature as small as 5 µm are achieved. This shows how low curvature micro-lenses can achieve collimation and how high curvature ones on single-mode fibers lead to high focusing (=) that is much smaller than what most conventional commercial techniques can reach. Given that this technique imposes no stress and causes no damage to the fiber receiving the micro-lens, it presents a significant potential for compatibility with non-silica-based and micro-structured fibers such as photonic crystal and quasi-crystal fibers.
本文介绍了一种基于聚合物的光纤微透镜模制制造技术,据我们所知,该技术具有前所未有的性能,以及其优点和应用。这项技术是一种快速且经济实惠的工具,可实现各种可能的球面和非球面微透镜尺寸及曲率。微透镜模具与接收透镜的光纤纤芯的对准是通过光学方式完成的,这使得精度很高。使用所提出的技术,制造了不同的微透镜。然后对单模光纤上两个不同微透镜的输出光束进行了表征。实现了曲率低至5 µm的光纤微透镜。这表明低曲率微透镜如何实现准直,以及单模光纤上的高曲率微透镜如何实现高聚焦(=),这比大多数传统商业技术所能达到的聚焦程度要小得多。鉴于该技术不会对接收微透镜的光纤施加应力且不会造成损坏,它在与非硅基和微结构光纤(如光子晶体光纤和准晶体光纤)的兼容性方面具有巨大潜力。