Suppr超能文献

BiN-Flow:用于稳健图像去雾的双向归一化流

BiN-Flow: Bidirectional Normalizing Flow for Robust Image Dehazing.

作者信息

Wu Yiqiang, Tao Dapeng, Zhan Yibing, Zhang Chenyang

出版信息

IEEE Trans Image Process. 2022;31:6635-6648. doi: 10.1109/TIP.2022.3214093. Epub 2022 Oct 26.

Abstract

Image dehazing aims to remove haze in images to improve their image quality. However, most image dehazing methods heavily depend on strict prior knowledge and paired training strategy, which would hinder generalization and performance when dealing with unseen scenes. In this paper, to address the above problem, we propose Bidirectional Normalizing Flow (BiN-Flow), which exploits no prior knowledge and constructs a neural network through weakly-paired training with better generalization for image dehazing. Specifically, BiN-Flow designs 1) Feature Frequency Decoupling (FFD) for mining the various texture details through multi-scale residual blocks and 2) Bidirectional Propagation Flow (BPF) for exploiting the one-to-many relationships between hazy and haze-free images using a sequence of invertible Flow. In addition, BiN-Flow constructs a reference mechanism (RM) that uses a small number of paired hazy and haze-free images and a large number of haze-free reference images for weakly-paired training. Essentially, the mutual relationships between hazy and haze-free images could be effectively learned to further improve the generalization and performance for image dehazing. We conduct extensive experiments on five commonly-used datasets to validate the BiN-Flow. The experimental results that BiN-Flow outperforms all state-of-the-art competitors demonstrate the capability and generalization of our BiN-Flow. Besides, our BiN-Flow could produce diverse dehazing images for the same image by considering restoration diversity.

摘要

图像去雾旨在去除图像中的雾霭以提高其图像质量。然而,大多数图像去雾方法严重依赖严格的先验知识和成对训练策略,这在处理未见场景时会阻碍泛化能力和性能表现。在本文中,为了解决上述问题,我们提出了双向归一化流(BiN-Flow),它不依赖先验知识,并通过弱成对训练构建神经网络,具有更好的图像去雾泛化能力。具体而言,BiN-Flow设计了1)特征频率解耦(FFD),通过多尺度残差块挖掘各种纹理细节,以及2)双向传播流(BPF),使用一系列可逆流来利用有雾和无雾图像之间的一对多关系。此外,BiN-Flow构建了一种参考机制(RM),该机制使用少量成对的有雾和无雾图像以及大量无雾参考图像进行弱成对训练。本质上,可以有效地学习有雾和无雾图像之间的相互关系,以进一步提高图像去雾的泛化能力和性能。我们在五个常用数据集上进行了广泛的实验来验证BiN-Flow。BiN-Flow优于所有现有最佳竞争对手的实验结果证明了我们的BiN-Flow的能力和泛化性。此外,我们的BiN-Flow通过考虑恢复多样性,可以为同一图像生成不同的去雾图像。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验