Suppr超能文献

用于图像去雾网络的自适应雾度像素强度感知Transformer结构

Adaptive haze pixel intensity perception transformer structure for image dehazing networks.

作者信息

Wu Jing, Liu Zhewei, Huang Feng, Luo Rong

机构信息

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350108, China.

出版信息

Sci Rep. 2024 Sep 28;14(1):22435. doi: 10.1038/s41598-024-73866-y.

Abstract

In the realm of deep learning-based networks for dehazing using paired clean-hazy image datasets to address complex real-world haze scenarios in daytime environments and cross-dataset challenges remains a significant concern due to algorithmic inefficiencies and color distortion. To tackle these issues, we propose SwinTieredHazymers (STH), a dehazing network designed to adaptively discern pixel intensities in hazy images and compute haze residue for clarity restoration. Through a unique three-branch design, we hierarchically modulate haze residuals by leveraging the global features brought by Transformer and the local features brought by Convolutional Neural Network (CNN) which has led to the algorithm's widespread applicability. Experimental results demonstrate that our approach surpasses advanced single-image dehazing methods in both quantitative metrics and visual fidelity for real-world hazy image dehazing, while also exhibiting strong performance in cross-dataset dehazing scenarios.

摘要

在基于深度学习的去雾网络领域,使用配对的清晰-模糊图像数据集来处理白天环境中复杂的真实世界雾霭场景以及跨数据集挑战,由于算法效率低下和颜色失真,仍然是一个重大问题。为了解决这些问题,我们提出了SwinTieredHazymers(STH),这是一种去雾网络,旨在自适应地辨别模糊图像中的像素强度,并计算雾霭残留以恢复清晰度。通过独特的三分支设计,我们利用Transformer带来的全局特征和卷积神经网络(CNN)带来的局部特征,对雾霭残留进行分层调制,这使得该算法具有广泛的适用性。实验结果表明,我们的方法在真实世界模糊图像去雾的定量指标和视觉保真度方面都超过了先进的单图像去雾方法,同时在跨数据集去雾场景中也表现出强大的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/31bd/11439035/acafc98b8dbc/41598_2024_73866_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验