Department of Biosystems Science and Engineering, Eidgenössische Technische Hochschule Zurich, 4058 Basel, Switzerland.
Proc Natl Acad Sci U S A. 2022 Oct 25;119(43):e2207802119. doi: 10.1073/pnas.2207802119. Epub 2022 Oct 18.
Adaptation is a running theme in biology. It allows a living system to survive and thrive in the face of unpredictable environments by maintaining key physiological variables at their desired levels through tight regulation. When one such variable is maintained at a certain value at the steady state despite perturbations to a single input, this property is called robust perfect adaptation (RPA). Here we address and solve the fundamental problem of maximal RPA (maxRPA), whereby, for a designated output variable, RPA is achieved with respect to perturbations in virtually all network parameters. In particular, we show that the maxRPA property imposes certain structural constraints on the network. We then prove that these constraints are fully characterized by simple linear algebraic stoichiometric conditions which differ between deterministic and stochastic descriptions of the dynamics. We use our results to derive a new internal model principle (IMP) for biomolecular maxRPA networks, akin to the celebrated IMP in control theory. We exemplify our results through several known biological examples of robustly adapting networks and construct examples of such networks with the aid of our linear algebraic characterization. Our results reveal the universal requirements for maxRPA in all biological systems, and establish a foundation for studying adaptation in general biomolecular networks, with important implications for both systems and synthetic biology.
适应是生物学中的一个主题。它允许一个生命系统在面对不可预测的环境时通过紧密的调节来维持关键的生理变量在其所需的水平上,从而生存和茁壮成长。当一个这样的变量在稳定状态下尽管受到单个输入的干扰仍保持在某个值时,这种特性就被称为稳健的完美适应(RPA)。在这里,我们解决了最大 RPA(maxRPA)的基本问题,即对于指定的输出变量,RPA 是针对几乎所有网络参数的扰动实现的。具体来说,我们表明 maxRPA 特性对网络施加了某些结构约束。然后,我们证明这些约束可以通过简单的线性代数化学计量条件来完全描述,这些条件在动力学的确定性和随机性描述之间是不同的。我们利用我们的结果为生物分子 maxRPA 网络推导出了一个新的内部模型原理(IMP),类似于控制理论中的著名的 IMP。我们通过几个已知的稳健适应网络的生物学实例来说明我们的结果,并借助我们的线性代数描述来构建这样的网络的实例。我们的结果揭示了所有生物系统中 maxRPA 的普遍要求,并为一般生物分子网络的适应研究奠定了基础,对系统和合成生物学都具有重要意义。