Suppr超能文献

关于在存在不确定性的情况下能够实现稳健适应的生物网络:一种线性系统理论方法。

On biological networks capable of robust adaptation in the presence of uncertainties: A linear systems-theoretic approach.

作者信息

Bhattacharya Priyan, Raman Karthik, Tangirala Arun K

机构信息

Department of Chemical Engineering, IIT Madras, Chennai, 600036, Tamil Nadu, India.

Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, IIT Madras, Chennai, 600036, Tamil Nadu, India.

出版信息

Math Biosci. 2023 Apr;358:108984. doi: 10.1016/j.mbs.2023.108984. Epub 2023 Feb 17.

Abstract

Biological adaptation, the tendency of every living organism to regulate its essential activities in environmental fluctuations, is a well-studied functionality in systems and synthetic biology. In this work, we present a generic methodology inspired by systems theory to discover the design principles for robust adaptation, perfect and imperfect, in two different contexts: (1) in the presence of deterministic external and parametric disturbances and (2) in a stochastic setting. In all the cases, firstly, we translate the necessary qualitative conditions for adaptation to mathematical constraints using the language of systems theory, which we then map back as design requirements for the underlying networks. Thus, contrary to the existing approaches, the proposed methodologies provide an exhaustive set of admissible network structures without resorting to computationally burdensome brute-force techniques. Further, the proposed frameworks do not assume prior knowledge about the particular rate kinetics, thereby validating the conclusions for a large class of biological networks. In the deterministic setting, we show that unlike the incoherent feed-forward network structures (IFFLP or opposer modules), the modules containing negative feedback with buffer action (NFBLB or balancer modules) are robust to parametric fluctuations when a specific part of the network is assumed to remain unaffected. To this end, we propose a sufficient condition for imperfect adaptation and show that adding negative feedback in an IFFLP topology improves the robustness concerning parametric fluctuations. Further, we propose a stricter set of necessary conditions for imperfect adaptation. Turning to the stochastic scenario, we adopt a Wiener-Kolmogorov filter strategy to tune the parameters of a given network structure towards minimum output variance. We show that both NFBLB and IFFLP can be used as a reduced-order W-K filter. Further, we define the notion of nearest neighboring motifs to compare the output variances across different network structures. We argue that the NFBLB achieves adaptation at the cost of a variance higher than its nearest neighboring motifs whereas the IFFLP topology produces locally minimum variance while compared with its nearest neighboring motifs. We present numerical simulations to support the theoretical results. Overall, our results present a generic, systematic, and robust framework for advancing the understanding of complex biological networks.

摘要

生物适应是指每个生物体在环境波动中调节其基本活动的倾向,这是系统生物学和合成生物学中一个经过充分研究的功能。在这项工作中,我们提出了一种受系统理论启发的通用方法,以发现两种不同情况下稳健适应(完美和不完美)的设计原则:(1)存在确定性外部和参数干扰的情况,以及(2)随机环境。在所有情况下,首先,我们使用系统理论的语言将适应的必要定性条件转化为数学约束,然后将其映射回作为基础网络的设计要求。因此,与现有方法不同,所提出的方法提供了一组详尽的可允许网络结构,而无需诉诸计算量大的暴力技术。此外,所提出的框架不假设关于特定速率动力学的先验知识,从而验证了一大类生物网络的结论。在确定性环境中,我们表明,与非相干前馈网络结构(IFFLP或反对者模块)不同,当假设网络的特定部分保持不变时,包含具有缓冲作用的负反馈的模块(NFBLB或平衡器模块)对参数波动具有鲁棒性。为此,我们提出了一个不完美适应的充分条件,并表明在IFFLP拓扑中添加负反馈可提高关于参数波动的鲁棒性。此外,我们提出了一组更严格的不完美适应的必要条件。转向随机场景,我们采用维纳 - 柯尔莫哥洛夫滤波器策略来调整给定网络结构的参数,以实现最小输出方差。我们表明,NFBLB和IFFLP都可以用作降阶维纳 - 柯尔莫哥洛夫滤波器。此外,我们定义了最近邻基序的概念,以比较不同网络结构的输出方差。我们认为,NFBLB以高于其最近邻基序的方差为代价实现适应,而与最近邻基序相比,IFFLP拓扑产生局部最小方差。我们提供了数值模拟来支持理论结果。总体而言,我们的结果为推进对复杂生物网络的理解提供了一个通用、系统且稳健的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验