Suppr超能文献

用于区分新鲜和长期储存玉米的成分及热解动力学的人工神经网络

Artificial neural networks to differentiate the composition and pyrolysis kinetics of fresh and long-stored maize.

作者信息

Postawa Karol, Fałtynowicz Hanna, Pstrowska Katarzyna, Szczygieł Jerzy, Kułażyński Marek

机构信息

Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

出版信息

Bioresour Technol. 2022 Nov;364:128137. doi: 10.1016/j.biortech.2022.128137. Epub 2022 Oct 17.

Abstract

In this study, a novel methodology to determine plant biomass composition using artificial neural networks (ANN) is presented. This study was performed to determine the changes in the composition of fresh and 12 month-long stored biomass samples. The production of biofuels is a common method used to manage agricultural waste. However, owing to the seasonal characteristics of cultivation, storage is necessary in the production chain. The results indicated that cellulose and lignin were stable over time, with a maximum drop of 2.82 pp and 1.72 pp, respectively. Hemicellulose was determined to be less stable, with a drop of up to 9.19 pp after 12 months of storage. Regarding the kinetic parameters, the stored samples required a lower activation energy, but only for the active phase of pyrolysis. The accuracy of the proposed tool was extremely high, with a relative percentage difference as low as 12.9%.

摘要

在本研究中,提出了一种使用人工神经网络(ANN)来确定植物生物质成分的新方法。进行这项研究是为了确定新鲜生物质样本和储存12个月的生物质样本成分的变化。生物燃料生产是处理农业废弃物的常用方法。然而,由于种植的季节性特点,生产链中需要进行储存。结果表明,纤维素和木质素随时间保持稳定,最大降幅分别为2.82个百分点和1.72个百分点。半纤维素的稳定性较差,储存12个月后降幅高达9.19个百分点。关于动力学参数,储存样本所需的活化能较低,但仅针对热解的活性阶段。所提出工具的准确性极高,相对百分比差异低至12.9%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验