Nomiya Kaito, Nakatani Naoki, Nakayama Naofumi, Goto Hitoshi, Nakagaki Masayuki, Sakaki Shigeyoshi, Yoshida Masaki, Kato Masako, Hada Masahiko
Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo192-0397, Japan.
CONFLEX Corporation, 3-23-17 Takanawa, Minato-ku, Tokyo108-0074, Japan.
J Phys Chem A. 2022 Oct 27;126(42):7687-7694. doi: 10.1021/acs.jpca.2c06079. Epub 2022 Oct 18.
Vapochromic crystals of Ni(II)-quinonoid complexes were theoretically investigated using density functional theory (DFT) calculations. Kato et al. previously reported that the purple crystals of a four-coordinate Ni(II)-quinonoid complex () exhibited vapochromic characteristics upon exposure to methanol gas, resulting in orange crystals of the six-coordinate methanol-bound complex () [, , 2345-2349]. However, the authors did not characterize the crystal structure of . In the present study, we computationally predicted the crystal structure of by performing a crystal structure search with classical force-field computations followed by optimization using DFT calculations. The simulated powder X-ray diffraction pattern of the DFT-optimized structure agreed with experimental observations, indicating that our predicted crystal structure is reliable. Investigation of the optimized crystal structure of revealed that its color change arose from changes in its 1D-band structure, which consists of Ni 3d orbitals and quinonoid π-orbitals. Intermolecular interactions were weakened upon the binding of methanol to the Ni(II) center in . Consequently, the intermolecular 3d-π interaction in lowered the band gap and induced the red-shifting of the monomeric four-coordinate Ni(II)-quinonoid complex. Meanwhile, the obtained absorption spectrum of closely corresponded to that of the monomeric six-coordinate Ni(II)-quinonoid complex. Our study provides a new strategy for accurately predicting molecular crystal structures and reveals a new insight into vapochromism based on band structure color switching.
利用密度泛函理论(DFT)计算对镍(II)-醌类配合物的气致变色晶体进行了理论研究。加藤等人此前报道,一种四配位镍(II)-醌类配合物()的紫色晶体在暴露于甲醇气体时表现出气致变色特性,生成六配位甲醇结合配合物()的橙色晶体[, , 2345 - 2349]。然而,作者并未对的晶体结构进行表征。在本研究中,我们通过经典力场计算进行晶体结构搜索,随后使用DFT计算进行优化,从而通过计算预测了的晶体结构。DFT优化结构的模拟粉末X射线衍射图谱与实验观察结果一致,表明我们预测的晶体结构是可靠的。对优化后的晶体结构的研究表明,其颜色变化源于其一维能带结构的变化,该结构由镍3d轨道和醌类π轨道组成。甲醇与中心的镍(II)中心结合后,分子间相互作用减弱。因此,中的分子间3d - π相互作用降低了带隙,并导致单体四配位镍(II)-醌类配合物发生红移。同时,所获得的的吸收光谱与单体六配位镍(II)-醌类配合物的吸收光谱密切对应。我们的研究为准确预测分子晶体结构提供了一种新策略,并揭示了基于能带结构颜色切换的气致变色的新见解。