Suppr超能文献

通过调整脂质浓度控制微流控生成的微泡的收缩。

Controlled Shrinkage of Microfluidically Generated Microbubbles by Tuning Lipid Concentration.

机构信息

Department of Physics, Toronto Metropolitan University, Toronto, Ontario M5B 2K3, Canada.

Institute for Biomedical Engineering, Science and Technology (iBEST), A Partnership Between Toronto Metropolitan University and St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario M5B 1T8, Canada.

出版信息

Langmuir. 2022 Nov 1;38(43):13021-13029. doi: 10.1021/acs.langmuir.2c01439. Epub 2022 Oct 19.

Abstract

Monodisperse microbubbles with diameters less than 10 μm are desirable in several ultrasound imaging and therapeutic delivery applications. However, conventional approaches to synthesize microbubbles, which are usually agitation-based, produce polydisperse bubbles that are less desirable because of their heterogeneous response when exposed to an ultrasound field. Microfluidics technology has the unique advantage of generating size-controlled monodisperse microbubbles, and it is now well established that the diameter of microfluidically made microbubbles can be tuned by varying the liquid flow rate, gas pressure, and dimensions of the microfluidic channel. It is also observed that once the microbubbles form, the bubbles shrink and eventually stabilize to a quasi-equilibrium diameter, and that the rate of stabilization is related to the lipid solution. However, how the lipid solution concentration affects the degree of bubble shrinkage, and the stable size of microbubbles, has not been thoroughly examined. Here, we investigate whether and how the lipid concentration affects the degree of microbubble shrinkage. Namely, we utilize a flow-focusing microfluidic geometry to generate monodisperse bubbles, and observe the effect of gas composition (2.5, 1.42, and 0.17 wt % octafluoropropane in nitrogen) and lipid concentration (1-16 mg/mL) on the degree of microbubble shrinkage. For the lipid system and gas utilized in these experiments, we observe a monotonic increase in the degree of microbubble shrinkage with decreasing lipid concentration, and no dependency on the gas composition. We hypothesize that the degree of shrinkage is related to lipid concentration by the self-assembly of lipids on the gas-liquid interface during bubble generation and subsequent lipid packing on the interface during shrinkage, which is arrested when a maximum packing density is achieved. We anticipate that this approach for creating and tuning the size of monodisperse microbubbles will find utility in biomedical applications, such as contrast-enhanced ultrasound imaging and ultrasound-triggered gene delivery.

摘要

具有小于 10μm 直径的单分散微泡在几种超声成像和治疗传递应用中是理想的。然而,通常基于搅拌的合成微泡的常规方法产生的多分散性微泡不太理想,因为它们在暴露于超声场时表现出不均匀的响应。微流控技术具有产生尺寸可控的单分散微泡的独特优势,并且现在已经确立,通过改变液体流速、气体压力和微流控通道的尺寸,可以调节微流控制造的微泡的直径。还观察到,一旦微泡形成,微泡就会收缩,最终稳定到准平衡直径,并且稳定速率与脂质溶液有关。然而,脂质溶液浓度如何影响微泡的收缩程度以及微泡的稳定尺寸尚未得到彻底研究。在这里,我们研究脂质浓度是否以及如何影响微泡的收缩程度。即,我们利用流聚焦微流控几何形状来产生单分散微泡,并观察气体组成(氮气中的 2.5、1.42 和 0.17wt%八氟丙烷)和脂质浓度(1-16mg/mL)对微泡收缩程度的影响。对于在这些实验中使用的脂质系统和气体,我们观察到随着脂质浓度的降低,微泡收缩程度呈单调增加,而与气体组成无关。我们假设收缩程度与脂质浓度之间的关系是通过在气泡生成过程中脂质在气液界面上的自组装以及随后在收缩过程中脂质在界面上的堆积来实现的,当达到最大堆积密度时,堆积就会停止。我们预计,这种创建和调整单分散微泡尺寸的方法将在生物医学应用中找到用途,例如对比增强超声成像和超声触发基因传递。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验