Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, China.
Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China.
ISME J. 2023 Jan;17(1):163-171. doi: 10.1038/s41396-022-01335-3. Epub 2022 Oct 19.
Anaerobic microbial manganese oxidation (AMMO) has been considered an ancient biological metabolism for Mn element cycling on Archaean Earth before the presence of oxygen. A light-dependent AMMO was recently observed under strictly anoxic conditions, providing a new proxy for the interpretation of the evolution of oxygenic photosynthesis. However, the feasibility of biotic Mn(II) oxidation in dark geological habitats that must have been abundant remains unknown. Therefore, we discovered that it would be possible to achieve AMMO in a light-independent electrosyntrophic coculture between Rhodopseudomonas palustris and Geobacter metallireducens. Transmission electron microscopy analysis revealed insoluble particle formation in the coculture with Mn(II) addition. X-ray diffraction and X-ray photoelectron spectroscopy analysis verified that these particles were a mixture of MnO and MnO. The absence of Mn oxides in either of the monocultures indicated that the Mn(II)-oxidizing activity was induced via electrosyntrophic interactions. Radical quenching and isotopic experiments demonstrated that hydroxyl radicals (•OH) produced from HO dissociation by R. palustris in the coculture contributed to Mn(II) oxidation. All these findings suggest a new, symbiosis-dependent and light-independent AMMO route, with potential importance to the evolution of oxygenic photosynthesis and the biogeochemical cycling of manganese on Archaean and modern Earth.
厌氧微生物锰氧化 (AMMO) 被认为是太古宙地球在氧气出现之前锰元素循环的一种古老生物代谢。最近在严格的缺氧条件下观察到了依赖光的 AMMO,为解释好氧光合作用的演化提供了一个新的指标。然而,在黑暗地质生境中生物性 Mn(II) 氧化的可行性,这些生境在当时必然非常丰富,但目前仍不清楚。因此,我们发现,在沼泽红假单胞菌和地杆菌之间的非依赖光照的电共生共培养中,有可能实现 AMMO。透射电子显微镜分析显示,在添加 Mn(II) 的共培养物中形成了不溶性颗粒。X 射线衍射和 X 射线光电子能谱分析证实这些颗粒是 MnO 和 MnO 的混合物。在单培养物中都没有 Mn 氧化物表明,Mn(II)氧化活性是通过电共生相互作用诱导的。自由基猝灭和同位素实验表明,共培养物中沼泽红假单胞菌通过 HO 解离产生的羟基自由基 (•OH) 有助于 Mn(II)氧化。所有这些发现表明了一种新的、依赖共生和非依赖光照的 AMMO 途径,对好氧光合作用的演化和太古宙和现代地球锰的生物地球化学循环具有潜在重要性。