Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan; Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama, Wakayama 649-6261, Japan.
Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai, Osaka 599-8531, Japan.
J Biosci Bioeng. 2021 May;131(5):475-482. doi: 10.1016/j.jbiosc.2020.12.014. Epub 2021 Jan 23.
Using soil samples, we screened for microbes that produce biogenic manganese oxides (BMOs) and isolated Mn(II)-oxidizing fungus, namely Pleosporales sp. Mn1 (Mn1). We purified the Mn(II)-oxidizing enzyme from intracellular extracts of Mn1. The enzyme oxidized Mn(II) most effectively at pH 7.0 and 45 °C. The N-terminal amino acid sequence of the purified enzyme possessed homology with multicopper oxidases in fungi. The properties of the enzyme and the effects of the pH and inhibitors on the Mn(II)-oxidization activity suggested that the enzyme is a member of the multicopper oxidase family. The X-ray diffraction pattern of the BMOs produced by Mn1 showed a strong correlation with that of a typical poorly crystalized vernadite (δ-MnO). Since BMOs are some of the most reactive materials in the environment, we investigated a potential new application of BMOs as oxidation catalysts. We confirmed that BMOs oxidized aromatic methyl groups when combined with the purified enzyme and a mediator, 1-hydroxybenzotriazole (HBT). BMO oxidation of 3,4-dimethoxytoluene achieved a better yield than that of abiotic MnO and white-rot fungus laccase under acidic and neutral pH conditions. Under neutral pH, the BMOs oxidized 3,4-dimethoxytoluene to yield 200-fold more 3,4-dimethoxybenzaldehyde than that of abiotic MnO. This is the first report to reveal that BMOs combined with a Mn(II)-oxidizing enzyme and mediator can oxidize aromatic hydrocarbons to yield corresponding aldehydes.
利用土壤样本,我们筛选出能够产生生物成因锰氧化物 (BMO) 的微生物,并分离出锰(II)氧化真菌,即 Pleosporales sp. Mn1 (Mn1)。我们从 Mn1 的细胞内提取物中纯化出锰(II)氧化酶。该酶在 pH 值为 7.0 和 45°C 时最有效地氧化 Mn(II)。纯化酶的 N 末端氨基酸序列与真菌中的多铜氧化酶具有同源性。酶的性质以及 pH 和抑制剂对 Mn(II)氧化活性的影响表明,该酶属于多铜氧化酶家族。Mn1 产生的 BMO 的 X 射线衍射图谱与典型的未结晶-vernadite (δ-MnO) 具有很强的相关性。由于 BMOs 是环境中最具反应性的材料之一,我们研究了 BMOs 作为氧化催化剂的潜在新应用。我们证实,BMOs 与纯化酶和介体 1-羟基苯并三唑 (HBT) 结合时可以氧化芳基甲基。与非生物 MnO 和白腐真菌漆酶相比,BMO 氧化 3,4-二甲氧基甲苯在酸性和中性 pH 条件下可获得更好的产率。在中性 pH 下,BMO 氧化 3,4-二甲氧基甲苯可生成 200 倍于非生物 MnO 的 3,4-二甲氧基苯甲醛。这是首次报道表明 BMOs 与锰(II)氧化酶和介体结合可以氧化芳烃生成相应的醛。