Li Yanchao, Lian Guoyun, Zhang Wenyu, Ma Guanglin, Ren Jin, Yang Jinfeng
School of Computer Science and Software Engineering, University of Science and Technology Liaoning, Anshan, Liaoning, China.
Institute of Applied Artificial Intelligence of the Guangdong-Hong Kong-Macao Greater Bay Area, Shenzhen Polytechnic, Shenzhen, Guangdong, China.
PeerJ Comput Sci. 2022 Sep 27;8:e1098. doi: 10.7717/peerj-cs.1098. eCollection 2022.
Person re-identification plays an important role in the construction of the smart city. A reliable person re-identification system relieves users from the inefficient work of identifying the specific individual from enormous numbers of photos or videos captured by different surveillance devices. The most existing methods either focus on local discriminative features without global contextual information or scatter global features while ignoring the local features, resulting in ineffective attention to irregular pedestrian zones. In this article, a novel Transformer-CNN Coupling Network (TCCNet) is proposed to capture the fluctuant body region features in a heterogeneous feature-aware manner. We employ two bridging modules, the Low-level Feature Coupling Module (LFCM) and the High-level Feature Coupling Module (HFCM), to improve the complementary characteristics of the hybrid network. It is significantly helpful to enhance the capacity to distinguish between foreground and background features, thereby reducing the unfavorable impact of cluttered backgrounds on person re-identification. Furthermore, the duplicate loss for the two branches is employed to incorporate semantic information from distant preferences of the two branches into the resulting person representation. The experiments on two large-scale person re-identification benchmarks demonstrate that the proposed TCCNet achieves competitive results compared with several state-of-the-art approaches. The mean Average Precision (mAP) and Rank-1 identification rate on the MSMT17 dataset achieve 66.9% and 84.5%, respectively.
行人重识别在智慧城市建设中发挥着重要作用。一个可靠的行人重识别系统可将用户从从不同监控设备捕获的大量照片或视频中识别特定个体的低效工作中解脱出来。现有的大多数方法要么专注于缺乏全局上下文信息的局部判别特征,要么分散全局特征而忽略局部特征,导致对不规则行人区域的关注无效。在本文中,提出了一种新颖的Transformer-CNN耦合网络(TCCNet),以异构特征感知的方式捕获波动的身体区域特征。我们采用两个桥接模块,即低级特征耦合模块(LFCM)和高级特征耦合模块(HFCM),以改善混合网络的互补特性。这对于增强区分前景和背景特征的能力非常有帮助,从而减少杂乱背景对行人重识别的不利影响。此外,对两个分支采用重复损失,将来自两个分支远距离偏好的语义信息纳入最终的行人表示中。在两个大规模行人重识别基准上的实验表明,与几种最新方法相比,所提出的TCCNet取得了有竞争力的结果。在MSMT17数据集上的平均平均精度(mAP)和Rank-1识别率分别达到66.9%和84.5%。