Suppr超能文献

利用卷积神经网络和异构无人机影像进行树冠自动制图,以进行恢复监测。

Automated mapping of canopies for restoration monitoring with convolutional neural networks and heterogeneous unmanned aerial vehicle imagery.

机构信息

Department of Botany, Nelson Mandela University, Gqeberha, South Africa.

Remote Sensing Centre for Earth System Research (RSC4Earth), Universität Leipzig, Leipzig, Germany.

出版信息

PeerJ. 2022 Oct 14;10:e14219. doi: 10.7717/peerj.14219. eCollection 2022.

Abstract

Ecosystem restoration and reforestation often operate at large scales, whereas monitoring practices are usually limited to spatially restricted field measurements that are (i) time- and labour-intensive, and (ii) unable to accurately quantify restoration success over hundreds to thousands of hectares. Recent advances in remote sensing technologies paired with deep learning algorithms provide an unprecedented opportunity for monitoring changes in vegetation cover at spatial and temporal scales. Such data can feed directly into adaptive management practices and provide insights into restoration and regeneration dynamics. Here, we demonstrate that convolutional neural network (CNN) segmentation algorithms can accurately classify the canopy cover of Jacq. in imagery acquired using different models of unoccupied aerial vehicles (UAVs) and under variable light intensities. is the target species for the restoration of Albany Subtropical Thicket vegetation, endemic to South Africa, where canopy cover is challenging to measure due to the dense, tangled structure of this vegetation. The automated classification strategy presented here is widely transferable to restoration monitoring as its application does not require any knowledge of the CNN model or specialist training, and can be applied to imagery generated by a range of UAV models. This will reduce the sampling effort required to track restoration trajectories in space and time, contributing to more effective management of restoration sites, and promoting collaboration between scientists, practitioners and landowners.

摘要

生态系统恢复和重新造林通常在大规模进行,而监测实践通常限于空间受限的实地测量,这些测量(i)耗时且费力,(ii)无法准确量化数百到数千公顷的恢复成功。最近遥感技术的进步与深度学习算法相结合,为在空间和时间尺度上监测植被覆盖变化提供了前所未有的机会。这些数据可以直接用于自适应管理实践,并深入了解恢复和再生动态。在这里,我们证明卷积神经网络 (CNN) 分割算法可以准确地对使用不同型号的无人飞行器 (UAV) 和不同光照强度获取的图像中的 Jacq.树冠覆盖进行分类。是南非特有 Albany 亚热带灌木丛植被恢复的目标物种,由于这种植被密集、纠结的结构,树冠覆盖很难测量。这里提出的自动化分类策略广泛适用于恢复监测,因为其应用不需要对 CNN 模型或专业培训有任何了解,并且可以应用于各种 UAV 模型生成的图像。这将减少跟踪恢复轨迹在空间和时间上所需的采样工作,有助于更有效地管理恢复地点,并促进科学家、从业者和土地所有者之间的合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/01e2/9575683/49fb2f092ab2/peerj-10-14219-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验