IEEE Trans Pattern Anal Mach Intell. 2022 Jul;44(7):3523-3542. doi: 10.1109/TPAMI.2021.3059968. Epub 2022 Jun 3.
Image segmentation is a key task in computer vision and image processing with important applications such as scene understanding, medical image analysis, robotic perception, video surveillance, augmented reality, and image compression, among others, and numerous segmentation algorithms are found in the literature. Against this backdrop, the broad success of deep learning (DL) has prompted the development of new image segmentation approaches leveraging DL models. We provide a comprehensive review of this recent literature, covering the spectrum of pioneering efforts in semantic and instance segmentation, including convolutional pixel-labeling networks, encoder-decoder architectures, multiscale and pyramid-based approaches, recurrent networks, visual attention models, and generative models in adversarial settings. We investigate the relationships, strengths, and challenges of these DL-based segmentation models, examine the widely used datasets, compare performances, and discuss promising research directions.
图像分割是计算机视觉和图像处理中的一项关键任务,具有重要的应用,如场景理解、医学图像分析、机器人感知、视频监控、增强现实和图像压缩等,文献中还发现了许多分割算法。在此背景下,深度学习(DL)的广泛成功促使人们开发了利用 DL 模型的新的图像分割方法。我们对这一最新文献进行了全面的回顾,涵盖了语义和实例分割的开创性工作的范围,包括卷积像素标记网络、编码器-解码器架构、多尺度和基于金字塔的方法、递归网络、视觉注意模型和对抗环境中的生成模型。我们研究了这些基于 DL 的分割模型的关系、优势和挑战,研究了广泛使用的数据集,比较了性能,并讨论了有前途的研究方向。
IEEE Trans Pattern Anal Mach Intell. 2022-7
J Imaging Inform Med. 2024-8
Comput Methods Programs Biomed. 2020-2
J Healthc Eng. 2022
Front Public Health. 2023
IEEE Trans Med Imaging. 2019-7-11
J Healthc Eng. 2019-12-26
IEEE Trans Neural Netw Learn Syst. 2017-11-22
Sci Rep. 2025-8-22
PLoS One. 2025-8-22
Pattern Recognit. 2026-3
Sensors (Basel). 2025-7-23
Plants (Basel). 2025-7-24
Digit Health. 2025-8-6
Animals (Basel). 2025-7-19