Suppr超能文献

基于计算的来源于 S 的丙二酰辅酶 A:ACP 转酰基酶的酶学研究。

Computationally Guided Enzymatic Studies on -Sourced Malonyl-CoA:ACP Transacylase.

机构信息

Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.

出版信息

J Agric Food Chem. 2022 Nov 2;70(43):13922-13934. doi: 10.1021/acs.jafc.2c05447. Epub 2022 Oct 20.

Abstract

The malonyl-CoA:ACP transacylase (MAT) domain is responsible for the selection and incorporation of malonyl building blocks in the biosynthesis of polyunsaturated fatty acids (PUFAs) in eukaryotic microalgae () and marine bacteria (, , and ). Elucidation of the structural basis underlying the substrate specificity and catalytic mechanism of the MAT will help to improve the yield and quality of PUFAs. Here, a methodology guided by molecular dynamics simulations was carried out to identify and mutate specificity-conferring residues within the MAT domain of . Combining mutagenesis, cell-free protein synthesis, and biochemical assay, we dissected nearby interactions and molecular mechanisms relevant for binding and catalysis and found that the reorientation of the Ser154 C-O bond establishes distinctive proton-transfer chains (His153-Ser154 and Asn235-His153-Ser154) for catalysis. Gln66 can be replaced by tyrosine to shorten the distance between His153 (N) and Ser154 (O), which facilitates a faster proton-transfer rate, allowing better use of acyl substrates than the wild type. Furthermore, we screened a mutant that displayed an 18.4% increase in PUFA accumulation. These findings provide important insights into the study of MAT through protein engineering and will benefit dissecting the molecular mechanisms of other PUFA-related catalytic domains.

摘要

丙二酰辅酶 A:ACP 转酰基酶(MAT)结构域负责在真核微藻()和海洋细菌(、、和)的多不饱和脂肪酸(PUFAs)生物合成中选择和掺入丙二酰基构建块。阐明 MAT 的底物特异性和催化机制的结构基础将有助于提高 PUFAs 的产量和质量。在这里,我们采用了一种由分子动力学模拟指导的方法,来鉴定和突变 MAT 结构域中的特异性决定残基。通过突变、无细胞蛋白合成和生化测定相结合,我们剖析了与结合和催化相关的附近相互作用和分子机制,并发现 Ser154 C-O 键的重定向为催化建立了独特的质子转移链(His153-Ser154 和 Asn235-His153-Ser154)。Gln66 可以被酪氨酸取代,以缩短 His153(N)和 Ser154(O)之间的距离,这使得更快的质子转移速率成为可能,从而使酰基底物得到更好的利用,优于野生型。此外,我们筛选出一种突变体,其 PUFAs 积累增加了 18.4%。这些发现通过蛋白质工程为 MAT 的研究提供了重要的见解,并将有助于剖析其他与 PUFAs 相关的催化结构域的分子机制。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验