Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
J Phys Chem Lett. 2022 Oct 27;13(42):10005-10010. doi: 10.1021/acs.jpclett.2c02447. Epub 2022 Oct 20.
Absolute thermodynamic quantities for critical chemical reactions are needed to determine the role of solvents and reactive environments in catalysis and electrocatalysis. Theoretical methods can provide such quantification but are often hindered by the innate complexity of electron correlation and dynamic relaxation of solvent environments. We present and validate a protocol for calculating the redox potentials of the ferrocene/ferrocenium redox pair in acetonitrile. Equation-of-motion and effective fragment potential (EFP) methods are used to characterize the adiabatic and vertical ionization potentials as well as the electron affinity processes. We benchmark molecular mechanics against the EFP model to show the differences in the ferrocene electronic polarizability in two redox states. Our best estimate of the redox potential (4.94 eV) agrees well with the experimental value (4.93 eV). This demonstrates the ability of modern computational methods to predict absolute redox potentials quantitatively and to quantify the correlation of dynamic effects, which underlie their origin.
绝对热力学量对于确定溶剂和反应环境在催化和电催化中的作用至关重要。理论方法可以提供这样的量化,但通常受到电子相关和溶剂环境动态弛豫固有复杂性的阻碍。我们提出并验证了一种在乙腈中计算二茂铁/二茂铁阳离子氧化还原对氧化还原电位的方案。运动方程和有效片段势(EFP)方法用于描述绝热和垂直电离势以及电子亲合过程。我们对分子力学与 EFP 模型进行了基准测试,以显示两种氧化还原态中二茂铁电子极化率的差异。我们对氧化还原电位的最佳估计值(4.94eV)与实验值(4.93eV)吻合较好。这证明了现代计算方法定量预测绝对氧化还原电位的能力,并能够量化动态效应的相关性,这是它们起源的基础。