Suppr超能文献

DyGCN:基于图卷积网络的高效动态图嵌入

DyGCN: Efficient Dynamic Graph Embedding With Graph Convolutional Network.

作者信息

Cui Zeyu, Li Zekun, Wu Shu, Zhang Xiaoyu, Liu Qiang, Wang Liang, Ai Mengmeng

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Apr;35(4):4635-4646. doi: 10.1109/TNNLS.2022.3185527. Epub 2024 Apr 4.

Abstract

Graph embedding, aiming to learn low-dimensional representations (aka. embeddings) of nodes in graphs, has received significant attention. In recent years, there has been a surge of efforts, among which graph convolutional networks (GCNs) have emerged as an effective class of models. However, these methods mainly focus on the static graph embedding. In the present work, an efficient dynamic graph embedding approach is proposed, called dynamic GCN (DyGCN), which is an extension of the GCN-based methods. The embedding propagation scheme of GCN is naturally generalized to a dynamic setting in an efficient manner, which propagates the change in topological structure and neighborhood embeddings along the graph to update the node embeddings. The most affected nodes are updated first, and then their changes are propagated to further nodes, which in turn are updated. Extensive experiments on various dynamic graphs showed that the proposed model can update the node embeddings in a time-saving and performance-preserving way.

摘要

图嵌入旨在学习图中节点的低维表示(也称为嵌入),已受到广泛关注。近年来,人们进行了大量的研究工作,其中图卷积网络(GCN)已成为一类有效的模型。然而,这些方法主要关注静态图嵌入。在本工作中,我们提出了一种高效的动态图嵌入方法,称为动态GCN(DyGCN),它是基于GCN方法的扩展。GCN的嵌入传播方案以一种有效的方式自然地推广到动态设置中,它沿着图传播拓扑结构和邻域嵌入的变化以更新节点嵌入。受影响最大的节点首先被更新,然后它们的变化传播到更远的节点,这些节点进而被更新。在各种动态图上进行的大量实验表明,所提出的模型能够以节省时间和保持性能的方式更新节点嵌入。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验