Suppr超能文献

用于知识库补全的端到端结构感知卷积网络

End-to-End Structure-Aware Convolutional Networks for Knowledge Base Completion.

作者信息

Shang Chao, Tang Yun, Huang Jing, Bi Jinbo, He Xiaodong, Zhou Bowen

机构信息

Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA.

JD AI Research, Mountain View, CA, USA.

出版信息

Proc AAAI Conf Artif Intell. 2019 Jul 17;33:3060-3067. doi: 10.1609/aaai.v33i01.33013060.

Abstract

Knowledge graph embedding has been an active research topic for knowledge base completion, with progressive improvement from the initial , , et al to the current state-of-the-art . uses 2D convolution over embeddings and multiple layers of nonlinear features to model knowledge graphs. The model can be efficiently trained and scalable to large knowledge graphs. However, there is no structure enforcement in the embedding space of . The recent graph convolutional network () provides another way of learning graph node embedding by successfully utilizing graph connectivity structure. In this work, we propose a novel end-to-end Structure-Aware Convolutional Network () that takes the benefit of and together. consists of an encoder of a weighted graph convolutional network (), and a decoder of a convolutional network called . utilizes knowledge graph node structure, node attributes and edge relation types. It has learnable weights that adapt the amount of information from neighbors used in local aggregation, leading to more accurate embeddings of graph nodes. Node attributes in the graph are represented as additional nodes in the . The decoder enables the state-of-the-art to be translational between entities and relations while keeps the same link prediction performance as . We demonstrate the effectiveness of the proposed on standard FB15k-237 and WN18RR datasets, and it gives about 10% relative improvement over the state-of-the-art in terms of HITS@1, HITS@3 and HITS@10.

摘要

知识图谱嵌入一直是知识库补全领域的一个活跃研究课题,从最初的[具体模型1]、[具体模型2]、[具体模型3]等人的研究开始不断取得进展,直至当前的最先进模型。[模型名称1]通过在嵌入上使用二维卷积和多层非线性特征来对知识图谱进行建模。该模型能够高效训练且可扩展到大型知识图谱。然而,在[模型名称1]的嵌入空间中没有结构约束。最近的图卷积网络(GCN)通过成功利用图的连通性结构提供了另一种学习图节点嵌入的方法。在这项工作中,我们提出了一种新颖的端到端结构感知卷积网络(SACN),它结合了[模型名称1]和GCN的优点。SACN由一个加权图卷积网络(WGCN)编码器和一个名为[具体名称]的卷积网络解码器组成。SACN利用知识图谱节点结构、节点属性和边关系类型。它具有可学习的权重,能够调整在局部聚合中使用的来自邻居的信息量,从而得到更准确的图节点嵌入。图中的节点属性在SACN中表示为额外的节点。解码器[具体名称]使最先进的[模型名称1]在实体和关系之间具有平移性,同时保持与[模型名称1]相同的链接预测性能。我们在标准的FB15k - 237和WN18RR数据集上展示了所提出的SACN的有效性,并且在HITS@1、HITS@3和HITS@10方面相对于最先进的[模型名称1]给出了约10%的相对提升。

相似文献

2
Text-Graph Enhanced Knowledge Graph Representation Learning.文本-图增强的知识图谱表示学习
Front Artif Intell. 2021 Aug 17;4:697856. doi: 10.3389/frai.2021.697856. eCollection 2021.
7
Co-Embedding of Nodes and Edges With Graph Neural Networks.节点和边的图神经网络联合嵌入。
IEEE Trans Pattern Anal Mach Intell. 2023 Jun;45(6):7075-7086. doi: 10.1109/TPAMI.2020.3029762. Epub 2023 May 5.
10
Exploring the role of edge distribution in graph convolutional networks.探索图卷积网络中边缘分布的作用。
Neural Netw. 2023 Nov;168:459-470. doi: 10.1016/j.neunet.2023.09.048. Epub 2023 Oct 4.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验