IEEE Trans Cybern. 2024 Apr;54(4):2345-2357. doi: 10.1109/TCYB.2022.3211499. Epub 2024 Mar 18.
Benign and malignant classification of clustered microcalcifications (MCs) in digital breast tomosynthesis (DBT) is an essential task in computer-aided diagnosis. However, due to the anisotropic resolution of DBT, three-dimensional (3-D) convolutional neural network (CNN)-based methods cannot extract hierarchical features efficiently. Moreover, the sparse distribution of MC points in the cluster makes it difficult for the CNN to extract discriminative structural information for classification. To comprehensively address these challenges, we propose a novel structure-aware hierarchical network (SAH-Net) for benign and malignant classification of clustered MC in a DBT volume. Specifically, the two-dimensional (2-D) group convolution is used to extract intraslice features. The one-to-one correspondence between group convolutions and slices ensures the independence of hierarchical feature extraction. Then, a partial deformable Transformer-based 3-D structural feature learning module is proposed to capture the long-range dependency between MC points in the cluster. We evaluate the proposed method on an in-house dataset with 495 clustered MCs collected from 462 DBT images. Experimental results confirm the validity of our proposed modules. The results also show that the proposed SAH-Net outperforms several other representative methods on this topic, and achieves the best classification result, with an area under the receiver operation curve (AUC) of 86.87%. The implementation of the proposed model is available at https://github.com/sunhaotian130911/SAHNet.
在数字乳腺断层合成(DBT)中,簇状微钙化(MC)的良性和恶性分类是计算机辅助诊断中的一项重要任务。然而,由于 DBT 的各向异性分辨率,基于三维(3-D)卷积神经网络(CNN)的方法无法有效地提取分层特征。此外,MC 点在簇中的稀疏分布使得 CNN 难以提取用于分类的有区别的结构信息。为了全面解决这些挑战,我们提出了一种新颖的结构感知分层网络(SAH-Net),用于 DBT 体中簇状 MC 的良性和恶性分类。具体来说,二维(2-D)分组卷积用于提取切片内特征。分组卷积和切片之间的一一对应关系确保了分层特征提取的独立性。然后,提出了一种基于部分可变形 Transformer 的 3-D 结构特征学习模块,用于捕获簇状 MC 之间的长程依赖关系。我们在一个内部数据集上评估了所提出的方法,该数据集包含 462 张 DBT 图像中采集的 495 个簇状 MC。实验结果证实了我们所提出的模块的有效性。结果还表明,所提出的 SAH-Net 在该主题上优于其他几种有代表性的方法,并取得了最佳的分类结果,接收器操作曲线(AUC)下面积为 86.87%。该模型的实现可在 https://github.com/sunhaotian130911/SAHNet 上获得。