Suppr超能文献

A forensically validated genetic toolkit for the species and lineage identification of the highly trafficked shingleback lizard (Tiliqua rugosa).

作者信息

Brown Amber O, Ueland Maiken, Stuart Barbara H, Frankham Greta J

机构信息

Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW 2007, Australia; Australian Museum Research Institute, Australian Museum, Sydney, NSW 2001, Australia.

Centre for Forensic Science, University of Technology Sydney, Ultimo, NSW 2007, Australia.

出版信息

Forensic Sci Int Genet. 2023 Jan;62:102784. doi: 10.1016/j.fsigen.2022.102784. Epub 2022 Sep 30.

Abstract

Shingleback lizards (Tiliqua rugosa) are among the most trafficked native fauna from Australia in the illegal pet trade. There are four morphologically recognised subspecies of shinglebacks, all with differing overseas market values. Shinglebacks from different geographic locales are often trafficked and housed together, which may complicate identifying the State jurisdiction where the poaching event occurred. Additionally, shinglebacks can be housed and trafficked with other species within the same genus, which may complicate DNA analysis, especially in scenarios where indirect evidence (e.g. swabs, faeces) is taken for analysis. In this study, a forensic genetic toolkit was designed and validated to target shingleback DNA for species identification and geographic origin. To do this, field sampling across Australia was conducted to expand the phylogeographic sampling of shinglebacks across their species range and include populations suspected to be poaching hotspots. A commonly used universal reptile primer set (ND4/LEU) was then validated for use in forensic casework related to the genus Tiliqua. Two additional ND4 primer sets were designed and validated. The first primer set was designed and demonstrated to preferentially amplify an ∼510 bp region of the genus Tiliqua over other reptiles and builds on existing data to expand the available phylogeographic database. The second primer set was designed and demonstrated to solely amplify an ∼220 bp region of T. rugosa ND4 over any other reptile species. Through the validation process, all primers were demonstrated to amplify T. rugosa DNA from a variety of sample types (e.g. degraded, low quality and mixed). Two of the primer sets were able to distinguish the genetic lineage of T. rugosa from the phylogeographic database. This work provides the first forensically validated toolkit and phylogeographic genetic database for Squatmate lizards.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验