Department of Computer Science, Duke University, Durham, NC 27708, USA.
Institute of Biochemistry and Center for Molecular Biosciences, University of Innsbruck, Innsbruck, 6020 Tyrol, Austria.
Cell Syst. 2022 Oct 19;13(10):830-843.e3. doi: 10.1016/j.cels.2022.09.003.
Resistance to pharmacological treatments is a major public health challenge. Here, we introduce Resistor-a structure- and sequence-based algorithm that prospectively predicts resistance mutations for drug design. Resistor computes the Pareto frontier of four resistance-causing criteria: the change in binding affinity (ΔK) of the (1) drug and (2) endogenous ligand upon a protein's mutation; (3) the probability a mutation will occur based on empirically derived mutational signatures; and (4) the cardinality of mutations comprising a hotspot. For validation, we applied Resistor to EGFR and BRAF kinase inhibitors treating lung adenocarcinoma and melanoma. Resistor correctly identified eight clinically significant EGFR resistance mutations, including the erlotinib and gefitinib "gatekeeper" T790M mutation and five known osimertinib resistance mutations. Furthermore, Resistor predictions are consistent with BRAF inhibitor sensitivity data from both retrospective and prospective experiments using KinCon biosensors. Resistor is available in the open-source protein design software OSPREY.
抗药性是一个主要的公共卫生挑战。在这里,我们介绍了 Resistor,这是一种基于结构和序列的算法,可前瞻性地预测耐药突变,从而进行药物设计。Resistor 计算了四个导致耐药的标准的 Pareto 前沿:(1)药物和(2)内源性配体在蛋白质突变时的结合亲和力变化;(3)根据经验衍生的突变特征发生突变的概率;以及(4)构成热点的突变数量。为了验证,我们将 Resistor 应用于治疗肺腺癌和黑色素瘤的 EGFR 和 BRAF 激酶抑制剂。Resistor 正确识别了八个临床上重要的 EGFR 耐药突变,包括厄洛替尼和吉非替尼的“守门员”T790M 突变和五个已知的奥希替尼耐药突变。此外,Resistor 的预测与使用 KinCon 生物传感器进行的回顾性和前瞻性实验中的 BRAF 抑制剂敏感性数据一致。Resistor 可在开源蛋白质设计软件 OSPREY 中使用。