CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
University of Chinese Academy of Sciences, Beijing, China.
Nature. 2022 Dec;612(7938):170-176. doi: 10.1038/s41586-022-05452-z. Epub 2022 Oct 20.
Cyclic dinucleotides (CDNs) are ubiquitous signalling molecules in all domains of life. Mammalian cells produce one CDN, 2'3'-cGAMP, through cyclic GMP-AMP synthase after detecting cytosolic DNA signals. 2'3'-cGAMP, as well as bacterial and synthetic CDN analogues, can act as second messengers to activate stimulator of interferon genes (STING) and elicit broad downstream responses. Extracellular CDNs must traverse the cell membrane to activate STING, a process that is dependent on the solute carrier SLC19A1. Moreover, SLC19A1 represents the major transporter for folate nutrients and antifolate therapeutics, thereby placing SLC19A1 as a key factor in multiple physiological and pathological processes. How SLC19A1 recognizes and transports CDNs, folate and antifolate is unclear. Here we report cryo-electron microscopy structures of human SLC19A1 (hSLC19A1) in a substrate-free state and in complexes with multiple CDNs from different sources, a predominant natural folate and a new-generation antifolate drug. The structural and mutagenesis results demonstrate that hSLC19A1 uses unique yet divergent mechanisms to recognize CDN- and folate-type substrates. Two CDN molecules bind within the hSLC19A1 cavity as a compact dual-molecule unit, whereas folate and antifolate bind as a monomer and occupy a distinct pocket of the cavity. Moreover, the structures enable accurate mapping and potential mechanistic interpretation of hSLC19A1 with loss-of-activity and disease-related mutations. Our research provides a framework for understanding the mechanism of SLC19-family transporters and is a foundation for the development of potential therapeutics.
环二核苷酸 (CDNs) 是所有生命领域中无处不在的信号分子。哺乳动物细胞在检测到细胞质 DNA 信号后,通过环鸟苷酸-腺苷酸合酶产生一种 CDN,即 2'3'-cGAMP。2'3'-cGAMP 以及细菌和合成的 CDN 类似物可以作为第二信使激活干扰素基因刺激因子 (STING),并引发广泛的下游反应。细胞外 CDNs 必须穿过细胞膜才能激活 STING,这一过程依赖溶质载体 SLC19A1。此外,SLC19A1 是叶酸营养物和抗叶酸治疗药物的主要转运体,因此 SLC19A1 是多个生理和病理过程中的关键因素。SLC19A1 如何识别和转运 CDNs、叶酸和抗叶酸尚不清楚。在这里,我们报告了人源 SLC19A1(hSLC19A1)在无底物状态以及与来自不同来源的多种 CDNs、主要天然叶酸和新一代抗叶酸药物复合物的低温电子显微镜结构。结构和突变体结果表明,hSLC19A1 使用独特但不同的机制来识别 CDN 和叶酸型底物。两个 CDN 分子作为一个紧凑的双分子单元结合在 hSLC19A1 腔体内,而叶酸和抗叶酸结合为单体并占据腔的独特口袋。此外,这些结构使我们能够准确地对 hSLC19A1 进行映射,并对其与失活和疾病相关的突变进行潜在的机制解释。我们的研究为理解 SLC19 家族转运蛋白的机制提供了框架,并为潜在治疗药物的开发奠定了基础。