Fredrickson Glenn H, Xie Shuyi, Edmund Jerrick, Le My Linh, Sun Dan, Grzetic Douglas J, Vigil Daniel L, Delaney Kris T, Chabinyc Michael L, Segalman Rachel A
Department of Chemical Engineering, University of California, Santa Barbara, California 93106, United States.
Materials Research Laboratory, University of California, Santa Barbara, California 93106, United States.
ACS Polym Au. 2022 Oct 12;2(5):299-312. doi: 10.1021/acspolymersau.2c00026. Epub 2022 Jul 22.
The small specific entropy of mixing of high molecular weight polymers implies that most blends of dissimilar polymers are immiscible with poor physical properties. Historically, a wide range of compatibilization strategies have been pursued, including the addition of copolymers or emulsifiers or installing complementary reactive groups that can promote the formation of block or graft copolymers during blending operations. Typically, such reactive blending exploits reversible or irreversible covalent or hydrogen bonds to produce the desired copolymer, but there are other options. Here, we argue that ionic bonds and electrostatic correlations represent an underutilized tool for polymer compatibilization and in tailoring materials for applications ranging from sustainable polymer alloys to organic electronics and solid polymer electrolytes. The theoretical basis for ionic compatibilization is surveyed and placed in the context of existing experimental literature and emerging classes of functional polymer materials. We conclude with a perspective on how electrostatic interactions might be exploited in plastic waste upcycling.
高分子量聚合物的混合熵小,这意味着大多数不同聚合物的共混物是不相容的,物理性能较差。从历史上看,人们采用了各种各样的增容策略,包括添加共聚物或乳化剂,或引入互补的反应性基团,这些基团可以在共混过程中促进嵌段或接枝共聚物的形成。通常,这种反应性共混利用可逆或不可逆的共价键或氢键来制备所需的共聚物,但也有其他选择。在这里,我们认为离子键和静电相互作用是一种未得到充分利用的聚合物增容工具,可用于定制从可持续聚合物合金到有机电子学和固体聚合物电解质等各种应用的材料。本文综述了离子增容的理论基础,并将其置于现有实验文献和新兴功能聚合物材料类别的背景下。最后,我们展望了如何在塑料废物升级回收中利用静电相互作用。