Suppr超能文献

利用深度学习对外周血中性粒细胞进行分类。

Classification of peripheral blood neutrophils using deep learning.

作者信息

Tseng Tser-Rei, Huang Hsuan-Ming

机构信息

Clinical Laboratory, Taipei City Hospital Zhongxiao Branch, Taipei City, Taiwan.

Institute of Medical Device and Imaging, College of Medicine, National Taiwan University, Taipei City, Taiwan.

出版信息

Cytometry A. 2023 Apr;103(4):295-303. doi: 10.1002/cyto.a.24698. Epub 2022 Oct 29.

Abstract

Deep learning has been used to classify the while blood cells in peripheral blood smears. However, the classification of developing neutrophils is rarely studied. Moreover, it is still unknown whether deep learning can work well on the data coming from different sources. In this study, we therefore investigate the classification performance of deep learning for immature and mature neutrophils. In particular, we used three open-access datasets obtained from different imaging systems: CellaVision DM 96, CellaVision DM 100, and iCELL ME-150. A total of 26,050 images identified by one laboratory technologist were randomly split into training, validation, and testing datasets. A total of 10 convolutional neural networks were trained to classify six blood cell types: myeloblast, promyelocyte, myelocyte, metamyelocyte, banded neutrophil, and segmented neutrophil. The experimental results showed that compared to any single model, the average ensemble model could achieve a better classification performance and provide a testing accuracy of 90.1%. The sensitivity and specificity of the average ensemble model for the six blood cell types were above 83.5% and 96.9%, respectively. Our results suggest that deep learning is a promising tool for the classification of developing neutrophils, but further improvement is required.

摘要

深度学习已被用于对外周血涂片的白细胞进行分类。然而,发育中的中性粒细胞的分类很少被研究。此外,深度学习能否在来自不同来源的数据上良好运行仍不清楚。因此,在本研究中,我们调查了深度学习对未成熟和成熟中性粒细胞的分类性能。具体而言,我们使用了从不同成像系统获得的三个开放获取数据集:CellaVision DM 96、CellaVision DM 100和iCELL ME - 150。一名实验室技术人员识别的总共26,050张图像被随机分为训练集、验证集和测试集。总共训练了10个卷积神经网络来对六种血细胞类型进行分类:原始粒细胞、早幼粒细胞、中幼粒细胞、晚幼粒细胞、带状中性粒细胞和分叶中性粒细胞。实验结果表明,与任何单个模型相比,平均集成模型可以实现更好的分类性能,并提供90.1%的测试准确率。平均集成模型对六种血细胞类型的敏感性和特异性分别高于83.5%和96.9%。我们的结果表明,深度学习是发育中的中性粒细胞分类的一个有前途的工具,但仍需要进一步改进。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验