Biodynamics and Human Performance Center, Georgia Southern University (Armstrong Campus), Savannah, GA, USA.
Exercise and Rehabilitation Sciences Graduate Program, Department of Physical Therapy, Marquette University, Milwaukee, WI, USA.
J Physiol. 2022 Dec;600(23):5005-5026. doi: 10.1113/JP282298. Epub 2022 Nov 9.
Ageing is accompanied by decrements in the size and function of skeletal muscle that compromise independence and quality of life in older adults. Developing therapeutic strategies to ameliorate these changes is critical but requires an in-depth mechanistic understanding of the underlying physiology. Over the past 25 years, studies on the contractile mechanics of isolated human muscle fibres have been instrumental in facilitating our understanding of the cellular mechanisms contributing to age-related skeletal muscle dysfunction. The purpose of this review is to characterize the changes that occur in single muscle fibre size and contractile function with ageing and identify key areas for future research. Surprisingly, most studies observe that the size and contractile function of fibres expressing slow myosin heavy chain (MHC) I are well-preserved with ageing. In contrast, there are profound age-related decrements in the size and contractile function of the fibres expressing the MHC II isoforms. Notably, lifelong aerobic exercise training is unable to prevent most of the decrements in fast fibre contractile function, which have been implicated as a primary mechanism for the age-related loss in whole-muscle power output. These findings reveal a critical need to investigate the effectiveness of other nutritional, pharmaceutical or exercise strategies, such as lifelong resistance training, to preserve fast fibre size and function with ageing. Moreover, integrating single fibre contractile mechanics with the molecular profile and other parameters important to contractile function (e.g. phosphorylation of regulatory proteins, innervation status, mitochondrial function, fibre economy) is necessary to comprehensively understand the ageing skeletal muscle phenotype.
衰老是伴随着骨骼肌的大小和功能的衰退而发生的,这会影响老年人的独立性和生活质量。开发改善这些变化的治疗策略至关重要,但需要深入了解潜在的生理学机制。在过去的 25 年里,对分离的人类肌肉纤维的收缩力学的研究,对于促进我们对导致与年龄相关的骨骼肌功能障碍的细胞机制的理解起到了重要作用。本综述的目的是描述随着年龄的增长,单个肌肉纤维大小和收缩功能的变化,并确定未来研究的关键领域。令人惊讶的是,大多数研究观察到,表达慢肌球蛋白重链(MHC)I 的纤维的大小和收缩功能随着年龄的增长而得到很好的保留。相比之下,表达 MHC II 同工型的纤维的大小和收缩功能会发生深刻的与年龄相关的衰退。值得注意的是,终身有氧运动训练无法预防快肌纤维收缩功能的大部分衰退,这被认为是与年龄相关的整个肌肉力量输出损失的主要机制。这些发现揭示了迫切需要研究其他营养、药物或运动策略的有效性,例如终身抗阻训练,以随着年龄的增长保持快肌纤维的大小和功能。此外,将单纤维收缩力学与对收缩功能很重要的分子特征和其他参数(例如调节蛋白的磷酸化、神经支配状态、线粒体功能、纤维经济性)相结合,对于全面了解衰老骨骼肌表型是必要的。