Suppr超能文献

基于光电子能谱和相关分子轨道理论的氮化铀及氢化氮化铀的电子性质

Electronic Properties of UN and UN from Photoelectron Spectroscopy and Correlated Molecular Orbital Theory.

作者信息

de Melo Gabriel F, Vasiliu Monica, Liu Gaoxiang, Ciborowski Sandra, Zhu Zhaoguo, Blankenhorn Moritz, Harris Rachel, Martinez-Martinez Chalynette, Dipalo Maria, Peterson Kirk A, Bowen Kit H, Dixon David A

机构信息

Department of Chemistry and Biochemistry, University of Alabama, Tuscaloosa, Alabama 35401, United States.

Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States.

出版信息

J Phys Chem A. 2022 Nov 3;126(43):7944-7953. doi: 10.1021/acs.jpca.2c06012. Epub 2022 Oct 21.

Abstract

The results of calculations of the properties of the anion UN including electron detachment are described, which further expand our knowledge of this diatomic molecule. High-level electronic structure calculations were conducted for the UN and UN diatomic molecules and compared to photoelectron spectroscopy measurements. The low-lying Ω states were obtained using multireference CASPT2 including spin-orbit effects up to ∼20,000 cm. At the Feller-Peterson-Dixon (FPD) level, the adiabatic electron affinity (AEA) of UN is estimated to be 1.402 eV and the vertical detachment energy (VDE) is 1.423 eV. The assignment of the UN excited states shows good agreement with the experimental results with a VDE of 1.424 eV. An Ω = 4 ground state was obtained for UN which is mainly associated with the H ΛS state. Thermochemical calculations estimate a bond dissociation energy (BDE) for UN (U + N) of 665.9 kJ/mol, ∼15% larger than that of UN and UN. The NBO analysis reveals U-N triple bonds for the UN, UN, and UN species.

摘要

描述了包括电子脱离在内的阴离子UN性质的计算结果,这进一步扩展了我们对这种双原子分子的认识。对UN和UN双原子分子进行了高水平的电子结构计算,并与光电子能谱测量结果进行了比较。使用多参考CASPT2获得了低能Ω态,包括高达约20,000 cm的自旋轨道效应。在费勒 - 彼得森 - 迪克森(FPD)水平下,UN的绝热电子亲和能(AEA)估计为1.402 eV,垂直脱离能(VDE)为1.423 eV。UN激发态的归属与实验结果吻合良好,VDE为1.424 eV。获得了UN的Ω = 4基态,其主要与H ΛS态相关。热化学计算估计UN(U + N)的键解离能(BDE)为665.9 kJ/mol,比UN和UN的键解离能大~15%。自然键轨道(NBO)分析揭示了UN、UN和UN物种的U-N三键。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验