Suppr超能文献

锕系元素中的阳离子-π键:用阈值光解离光谱和理论研究UO(苯)(= 0, 1, 2)配合物

Cation-π Bonding in Actinides: UO(Benzene) ( = 0, 1, 2) Complexes Studied with Threshold Photodissociation Spectroscopy and Theory.

作者信息

Colley Jason E, Batchelor Anna G, Stratton B Wade, Duncan Michael A

机构信息

Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States.

出版信息

J Phys Chem Lett. 2025 Feb 13;16(6):1515-1521. doi: 10.1021/acs.jpclett.4c03603. Epub 2025 Feb 3.

Abstract

Cation-π complexes of the form UO(benzene) ( = 0, 1, 2) are produced by laser vaporization and cooled in a supersonic molecular beam. These ions are mass selected and studied with UV-visible laser photodissociation spectroscopy. Each of these complexes photodissociates by elimination of the benzene ligand. Above an energetic threshold, the absorption and photodissociation are continuous, indicating a high density of strongly coupled electronic states. The thresholds for the dissociation of each of these three complexes are measured and assigned as their respective bond dissociation energies. The bond energies determined [U-(benzene): 42.5 ± 0.3 kcal/mol; UO-(benzene): 41.0 ± 0.3 kcal/mol; UO-(benzene): 39.7 ± 0.3 kcal/mol] are comparable to those of transition metal ion-benzene complexes. Computational studies at the DFT/B3LYP level complement the experiments, predicting dissociation energies in reasonably good agreement with the experiments. Experiments and theory agree that the U(benzene) complex is more strongly bound than its corresponding oxide ions. This new thermochemistry on actinide cation-π bonding should stimulate higher-level computational studies on these systems.

摘要

通过激光汽化产生形式为UO(苯)( = 0、1、2)的阳离子-π配合物,并在超声分子束中冷却。对这些离子进行质量选择,并通过紫外可见激光光解离光谱进行研究。这些配合物中的每一个都通过消除苯配体而发生光解离。在能量阈值以上,吸收和光解离是连续的,表明存在高密度的强耦合电子态。测量这三种配合物各自的解离阈值,并将其指定为它们各自的键解离能。所确定的键能[U-(苯):42.5±0.3千卡/摩尔;UO-(苯):41.0±0.3千卡/摩尔;UO-(苯):39.7±0.3千卡/摩尔]与过渡金属离子-苯配合物的键能相当。在DFT/B3LYP水平上的计算研究对实验进行了补充,预测的解离能与实验结果相当吻合。实验和理论均表明,U(苯)配合物的结合比其相应的氧化物离子更强。这种关于锕系元素阳离子-π键合的新热化学应会激发对这些体系进行更高水平的计算研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af7e/11831726/274e6332d322/jz4c03603_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验