CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
CO(2) Research Center (CO(2)RES), Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Malaysia.
Chemosphere. 2023 Jan;311(Pt 1):136936. doi: 10.1016/j.chemosphere.2022.136936. Epub 2022 Oct 20.
Polysulfone (PSF) based mixed matrix membranes (MMMs) are one of the most broadly studied polymeric materials used for CO/CH separation. The performance of existing PSF membranes encounters a bottleneck for widespread expansion in industrial applications due to the trade-off amongst permeability and selectivity. Membrane performance has been postulated to be enhanced via functionalization of filler at different weight percentages. Nonetheless, the preparation of functionalized MMMs without defects and its empirical study that exhibits improved CO/CH separation performance is challenging at an experimental scale that needs prior knowledge of the compatibility between the filler and polymer. Molecular simulation approaches can be used to explore the effect of functionalization on MMM's gas transport properties at an atomic level without the challenges in the experimental study, however, they have received less scrutiny to date. In addition, most of the research has focused on pure gas studies while mixed gas transport properties that reflect real separation in functionalized silica/PSF MMMs are scarcely available. In this work, a molecular simulation computational framework has been developed to investigate the structural, physical properties and gas transport behavior of amine-functionalized silica/PSF-based MMMs. The effect of varying weight percentages (i.e., 15-30 wt.%) of amine-functionalized silica and gas concentrations (i.e., 30% CH/CO, 50% CH/CO, and 70% CH/CO) on physical and gas transport characteristics in amine-functionalized silica/PSF MMMs at 308.15 K and 1 atm has been investigated. Functionalization of silica nanoparticles was found to increase the diffusion and solubility coefficients, leading to an increase in the percentage enhancement of permeability and selectivity for amine-functionalized silica/PSF MMM by 566% and 56%, respectively, compared to silica/PSF-based MMMs at optimal weight percentage of 20 wt.%. The model's permeability differed by 7.1% under mixed gas conditions. The findings of this study could help to improve real CO/CH separation in the future design and concept of functionalized MMMs using molecular simulation and empirical modeling strategies.
基于聚砜(PSF)的混合基质膜(MMM)是用于 CO/CH 分离的最广泛研究的聚合物材料之一。由于渗透性和选择性之间的权衡,现有 PSF 膜的性能在工业应用中的广泛扩展遇到了瓶颈。通过在不同的重量百分比下对填充剂进行功能化,可以假设膜性能得到增强。尽管如此,在实验规模上制备无缺陷的功能化 MMM 及其表现出改善的 CO/CH 分离性能的经验研究仍然具有挑战性,这需要在填充剂和聚合物之间的相容性方面具有先验知识。分子模拟方法可用于在原子水平上探索功能化对 MMM 气体传输特性的影响,而无需在实验研究中面临挑战,然而,迄今为止,它们受到的关注较少。此外,大多数研究都集中在纯气体研究上,而反映功能化二氧化硅/PSF MMM 中真实分离的混合气体传输特性却很少见。在这项工作中,开发了一种分子模拟计算框架来研究胺功能化二氧化硅/PSF 基 MMM 的结构、物理性质和气体传输行为。研究了不同重量百分比(即 15-30wt.%)的胺功能化二氧化硅和气体浓度(即 30%CH/CO、50%CH/CO 和 70%CH/CO)对 308.15K 和 1atm 下胺功能化二氧化硅/PSF MMM 的物理和气体传输特性的影响。发现二氧化硅纳米粒子的功能化增加了扩散和溶解度系数,导致胺功能化二氧化硅/PSF MMM 的渗透性和选择性的百分比增强分别比二氧化硅/PSF 基 MMM 高 566%和 56%,最佳重量百分比为 20wt.%。在混合气体条件下,模型的渗透率相差 7.1%。这项研究的结果可以帮助通过分子模拟和经验建模策略来改善未来功能化 MMM 的实际 CO/CH 分离的设计和概念。