Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Buch, Berlin, Germany; Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany.
Charité-Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Clinical Pharmacology and Toxicology, Berlin, Germany.
Life Sci. 2022 Dec 1;310:121114. doi: 10.1016/j.lfs.2022.121114. Epub 2022 Oct 20.
Prostaglandins are important signaling lipids with prostaglandin E (PGE) known to be the most abundant prostaglandin across tissues. In kidney, PGE plays an important role in the regulation of kidney homeostasis through its EP receptor signaling. Catabolism of PGE yields the metabolic products that are widely considered biologically inactive. Although recent in vitro evidence suggested the ability of 15-keto-PGE (a downstream metabolite of PGE) to activate EP receptors, the question whether 15-keto-PGE exhibits physiological roles remains unresolved.
Pharmacological treatment was performed in transgenic zebrafish embryos using 500 μM 15-keto-PGE and 20 μM EP receptors antagonists' solutions during zebrafish embryonic development. After the exposure period, the embryos were fixed for confocal microscopy imaging and glomerular morphology analysis.
Here, we show that 15-keto-PGE can bind and stabilize EP2 and EP4 receptors on the plasma membrane in the yeast model. Using lipidomic analysis, we demonstrate both PGE and 15-keto-PGE are present at considerable levels in zebrafish embryos. Our high-resolution image analysis reveals the exogenous treatment with 15-keto-PGE perturbs glomerular vascularization during zebrafish development. Specifically, we show that the increased levels of 15-keto-PGE cause intercalation defects between podocytes and endothelial cells of glomerular capillaries effectively reducing the surface area of glomerular filtration barrier. Importantly, 15-keto-PGE-dependent defects can be fully reversed by combined blockade of the EP2 and EP4 receptors.
Altogether, our results reveal 15-keto-PGE to be a biologically active metabolite that modulates the EP receptor signaling in vivo, thus playing a potential role in kidney biology.
前列腺素是重要的信号脂质,其中前列腺素 E(PGE)在组织中含量最丰富。在肾脏中,PGE 通过其 EP 受体信号在调节肾脏内稳态方面发挥重要作用。PGE 的分解代谢产物被广泛认为是生物上无活性的。尽管最近的体外证据表明 15-酮-PGE(PGE 的下游代谢产物)能够激活 EP 受体,但 15-酮-PGE 是否具有生理作用仍未解决。
在斑马鱼胚胎发育过程中,使用 500μM 15-酮-PGE 和 20μM EP 受体拮抗剂溶液对转基因斑马鱼胚胎进行药物处理。暴露期结束后,将胚胎固定进行共聚焦显微镜成像和肾小球形态分析。
在这里,我们表明 15-酮-PGE 可以在酵母模型中结合并稳定质膜上的 EP2 和 EP4 受体。通过脂质组学分析,我们证明 PGE 和 15-酮-PGE 都以相当高的水平存在于斑马鱼胚胎中。我们的高分辨率图像分析显示,外源性 15-酮-PGE 处理会干扰斑马鱼发育过程中的肾小球血管生成。具体来说,我们表明,15-酮-PGE 水平的升高导致足细胞和肾小球毛细血管内皮细胞之间的插层缺陷,有效减少肾小球滤过屏障的表面积。重要的是,EP2 和 EP4 受体的联合阻断可完全逆转 15-酮-PGE 依赖性缺陷。
总的来说,我们的结果表明 15-酮-PGE 是一种生物活性代谢物,可调节体内 EP 受体信号转导,从而在肾脏生物学中发挥潜在作用。