Suppr超能文献

《解析非线性最优制导与严格解析(非数值)方法的控制放大论》

Treatise on Analytic Nonlinear Optimal Guidance and Control Amplification of Strictly Analytic (Non-Numerical) Methods.

作者信息

Sands Timothy

机构信息

Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY, United States.

出版信息

Front Robot AI. 2022 Oct 4;9:884669. doi: 10.3389/frobt.2022.884669. eCollection 2022.

Abstract

Optimal control is seen by researchers from a different perspective than that from which the industry practitioners see it. Either type of user can easily become confounded when deciding which manner of optimal control should be used for guidance and control of mechanics. Such optimization methods are useful for autonomous navigation, guidance, and control, but their performance is hampered by noisy multi-sensor technologies and poorly modeled system equations, and real-time on-board utilization is generally computationally burdensome. Some methods proposed here use noisy sensor data to learn the optimal guidance and control solutions in real-time (online), where non-iterative instantiations are preferred to reduce computational burdens. This study aimed to highlight the efficacy and limitations of several common methods for optimizing guidance and control while proposing a few more, where all . Five disparate types of optimum guidance and control algorithms are presented and compared to a classical benchmark. Comparative analysis is based on tracking errors (both states and rates), fuel usage, and computational burden. by matching open-loop solutions to the constrained optimization problem (in terms of state and rate errors and fuel usage), while robustness is validated in the utilization of mixed, noisy state and rate sensors and uniformly varying mass and mass moments of inertia.

摘要

研究人员看待最优控制的视角与行业从业者不同。在决定应采用何种最优控制方式来指导和控制机械装置时,这两类用户都可能轻易感到困惑。此类优化方法对自主导航、制导和控制很有用,但它们的性能受到多传感器噪声技术和系统方程建模不佳的影响,并且机载实时应用通常计算量很大。这里提出的一些方法使用有噪声的传感器数据实时(在线)学习最优制导和控制解决方案,其中更倾向于非迭代实例化以减轻计算负担。本研究旨在突出几种常见的优化制导和控制方法的有效性和局限性,同时提出另外几种方法,其中所有…… 给出了五种不同类型的最优制导和控制算法,并与一个经典基准进行比较。对比分析基于跟踪误差(状态和速率)、燃料使用情况和计算负担。通过将开环解与约束优化问题相匹配(在状态和速率误差以及燃料使用方面),同时在混合、有噪声的状态和速率传感器以及质量和转动惯量均匀变化的情况下验证了鲁棒性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cd7b/9583946/be2e79934049/frobt-09-884669-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验