Suppr超能文献

由S-系统建模的非线性生物现象建模。

Modeling of nonlinear biological phenomena modeled by S-systems.

作者信息

Mansouri Majdi M, Nounou Hazem N, Nounou Mohamed N, Datta Aniruddha A

机构信息

Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha, Qatar.

Electrical and Computer Engineering Program, Texas A&M University at Qatar, Doha, Qatar.

出版信息

Math Biosci. 2014 Mar;249:75-91. doi: 10.1016/j.mbs.2014.01.011. Epub 2014 Feb 11.

Abstract

A central challenge in computational modeling of biological systems is the determination of the model parameters. In such cases, estimating these variables or parameters from other easily obtained measurements can be extremely useful. For example, time-series dynamic genomic data can be used to develop models representing dynamic genetic regulatory networks, which can be used to design intervention strategies to cure major diseases and to better understand the behavior of biological systems. Unfortunately, biological measurements are usually highly infected by errors that hide the important characteristics in the data. Therefore, these noisy measurements need to be filtered to enhance their usefulness in practice. This paper addresses the problem of state and parameter estimation of biological phenomena modeled by S-systems using Bayesian approaches, where the nonlinear observed system is assumed to progress according to a probabilistic state space model. The performances of various conventional and state-of-the-art state estimation techniques are compared. These techniques include the extended Kalman filter (EKF), unscented Kalman filter (UKF), particle filter (PF), and the developed variational Bayesian filter (VBF). Specifically, two comparative studies are performed. In the first comparative study, the state variables (the enzyme CadA, the model cadBA, the cadaverine Cadav and the lysine Lys for a model of the Cad System in Escherichia coli (CSEC)) are estimated from noisy measurements of these variables, and the various estimation techniques are compared by computing the estimation root mean square error (RMSE) with respect to the noise-free data. In the second comparative study, the state variables as well as the model parameters are simultaneously estimated. In this case, in addition to comparing the performances of the various state estimation techniques, the effect of the number of estimated model parameters on the accuracy and convergence of these techniques is also assessed. The results of both comparative studies show that the UKF provides a higher accuracy than the EKF due to the limited ability of EKF to accurately estimate the mean and covariance matrix of the estimated states through lineralization of the nonlinear process model. The results also show that the VBF provides a relative improvement over PF. This is because, unlike the PF which depends on the choice of sampling distribution used to estimate the posterior distribution, the VBF yields an optimum choice of the sampling distribution, which also utilizes the observed data. The results of the second comparative study show that, for all techniques, estimating more model parameters affects the estimation accuracy as well as the convergence of the estimated states and parameters. The VBF, however, still provides advantages over other methods with respect to estimation accuracy as well convergence.

摘要

生物系统计算建模中的一个核心挑战是模型参数的确定。在这种情况下,从其他易于获得的测量值中估计这些变量或参数可能非常有用。例如,时间序列动态基因组数据可用于开发表示动态遗传调控网络的模型,这些模型可用于设计治疗重大疾病的干预策略,并更好地理解生物系统的行为。不幸的是,生物测量通常受到误差的严重影响,这些误差掩盖了数据中的重要特征。因此,需要对这些有噪声的测量值进行滤波,以提高它们在实际中的有用性。本文使用贝叶斯方法解决了由S-系统建模的生物现象的状态和参数估计问题,其中假设非线性观测系统根据概率状态空间模型进行演化。比较了各种传统和先进的状态估计技术的性能。这些技术包括扩展卡尔曼滤波器(EKF)、无迹卡尔曼滤波器(UKF)、粒子滤波器(PF)和开发的变分贝叶斯滤波器(VBF)。具体而言,进行了两项比较研究。在第一项比较研究中,从这些变量的噪声测量值中估计状态变量(大肠杆菌中Cad系统模型(CSEC)的酶CadA、模型cadBA、尸胺Cadav和赖氨酸Lys),并通过计算相对于无噪声数据的估计均方根误差(RMSE)来比较各种估计技术。在第二项比较研究中,同时估计状态变量和模型参数。在这种情况下,除了比较各种状态估计技术的性能外,还评估了估计的模型参数数量对这些技术的准确性和收敛性的影响。两项比较研究的结果表明,由于EKF通过对非线性过程模型进行线性化来准确估计估计状态的均值和协方差矩阵的能力有限,UKF提供了比EKF更高的准确性。结果还表明,VBF相对于PF有相对改进。这是因为,与依赖于用于估计后验分布的采样分布选择的PF不同,VBF产生了采样分布的最优选择,该选择还利用了观测数据。第二项比较研究的结果表明,对于所有技术,估计更多的模型参数会影响估计准确性以及估计状态和参数的收敛性。然而,VBF在估计准确性和收敛性方面仍然比其他方法具有优势。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验