Russo Luigi, Salzano Giulia, Corvino Andrea, Bistaffa Edoardo, Moda Fabio, Celauro Luigi, D'Abrosca Gianluca, Isernia Carla, Milardi Danilo, Giachin Gabriele, Malgieri Gaetano, Legname Giuseppe, Fattorusso Roberto
Department of Environmental, Biological and Pharmaceutical Science and Technology, University of Campania Luigi Vanvitelli Caserta Italy
Laboratory of Prion Biology, Department of Neuroscience, Scuola Internazionale Superiore di Studi Avanzati (SISSA) Trieste Italy
Chem Sci. 2022 Aug 5;13(35):10406-10427. doi: 10.1039/d2sc00345g. eCollection 2022 Sep 14.
The conformational conversion of the cellular prion protein (PrP) into a misfolded, aggregated and infectious scrapie isoform is associated with prion disease pathology and neurodegeneration. Despite the significant number of experimental and theoretical studies the molecular mechanism regulating this structural transition is still poorly understood. Here, Nuclear Magnetic Resonance (NMR) methodologies we investigate at the atomic level the mechanism of the human HuPrP(90-231) thermal unfolding and characterize the conformational equilibrium between its native structure and a β-enriched intermediate state, named β-PrPI. By comparing the folding mechanisms of metal-free and Cu-bound HuPrP(23-231) and HuPrP(90-231) we show that the coupling between the N- and C-terminal domains, through transient electrostatic interactions, is the key molecular process in tuning long-range correlated μs-ms dynamics that in turn modulate the folding process. Moreover, thioflavin T (ThT)-fluorescence fibrillization assays we show that β-PrPI is involved in the initial stages of PrP fibrillation, overall providing a clear molecular description of the initial phases of prion misfolding. Finally, we show by using Real-Time Quaking-Induced Conversion (RT-QuIC) that the β-PrPI acts as a seed for the formation of amyloid aggregates with a seeding activity comparable to that of human infectious prions.
细胞朊蛋白(PrP)向错误折叠、聚集且具有传染性的瘙痒病异构体的构象转变与朊病毒疾病病理学和神经退行性变有关。尽管有大量的实验和理论研究,但调节这种结构转变的分子机制仍知之甚少。在此,我们利用核磁共振(NMR)方法在原子水平上研究人HuPrP(90 - 231)的热解折叠机制,并表征其天然结构与一种富含β-片层的中间态(称为β-PrPI)之间的构象平衡。通过比较无金属和结合铜的HuPrP(23 - 231)及HuPrP(90 - 231)的折叠机制,我们表明N端和C端结构域之间通过瞬时静电相互作用的耦合是调节长程相关微秒至毫秒动力学的关键分子过程,而这种动力学反过来又调节折叠过程。此外,通过硫黄素T(ThT)荧光纤维形成测定,我们表明β-PrPI参与了PrP纤维化的初始阶段,总体上为朊病毒错误折叠的初始阶段提供了清晰的分子描述。最后,我们通过实时颤抖诱导转化(RT-QuIC)表明,β-PrPI作为淀粉样聚集体形成的种子,其种子活性与人传染性朊病毒相当。