Qu Mengyang, Huang Gang, Liu Xinyi, Nie Xuechuan, Qi Chonghai, Wang Huabin, Hu Jun, Fang Haiping, Gao Yi, Liu Wei-Tao, Francisco Joseph S, Wang Chunlei
Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China.
University of Chinese Academy of Sciences Beijing 100049 China.
Chem Sci. 2022 Aug 16;13(35):10546-10554. doi: 10.1039/d2sc02047e. eCollection 2022 Sep 14.
The lack of understanding of the molecular-scale water adsorbed on TiO surfaces under ambient conditions has become a major obstacle for solving the long-time scientific and applications issues, such as the photo-induced wetting phenomenon and designing novel advanced TiO-based materials. Here, with the molecular dynamics simulation, we identified an ordered water bilayer structure with a two-dimensional hydrogen bonding network on a rutile TiO(110) surface at ambient temperature, corroborated by vibrational sum-frequency generation spectroscopy. The reduced number of hydrogen bonds between the water bilayer and water droplet results in a notable water contact angle (25 ± 5°) of the pristine TiO surface. This surface hydrophobicity can be enhanced by the adsorption of the formate/acetate molecules, and diminishes with dissociated HO molecules. Our new physical framework well explained the long-time controversy on the origin of the hydrophobicity/hydrophilicity of the TiO surface, thus help understanding the efficiency of TiO devices in producing electrical energy of solar cells and the photo-oxidation of organic pollutants.
在环境条件下,对吸附在二氧化钛(TiO)表面的分子尺度水缺乏了解,已成为解决长期存在的科学和应用问题(如光致润湿现象和设计新型先进的TiO基材料)的主要障碍。在此,通过分子动力学模拟,我们确定了在环境温度下金红石TiO(110)表面存在一种具有二维氢键网络的有序水双层结构,这得到了振动和频产生光谱的证实。水双层与水滴之间氢键数量的减少导致原始TiO表面具有显著的水接触角(25±5°)。这种表面疏水性可通过甲酸盐/乙酸盐分子的吸附而增强,并随着离解的羟基(HO)分子而减弱。我们新的物理框架很好地解释了长期以来关于TiO表面疏水性/亲水性起源的争议,从而有助于理解TiO器件在太阳能电池产生电能以及有机污染物光氧化方面的效率。