Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129, Turin, Italy.
Biomed Microdevices. 2022 Oct 24;24(4):35. doi: 10.1007/s10544-022-00635-x.
Ultrasounds are already broadly exploited in clinical diagnostics and are now becoming a powerful and not harmful tool in antitumoral therapies, as they are able to produce damages towards cancer cells, thank to inertial cavitation and temperature increase. The use of US alone or combined to molecular compounds, microbubbles or solid-state nanoparticles is the focus of current research and clinical trials, like thermoablation, drug sonoporation or sonodynamic therapies. In the present work, we discuss on the non-thermal effects of ultrasound and the conditions which enable oxygen radical production and which role they can have in provoking the death of different cancer cell lines. In this perspective, we set a mathematical model to predict the pressure spatial distribution in a defined water sample volume and thus obtain a map of acoustic pressures and acoustic intensities of the applied ultrasound at different input powers. We then validate and verify these numerical results with direct acoustic measurements and by detecting the production of reactive oxygen species (ROS) by means of sonochemiluminescence (SCL) and electron paramagnetic resonance (EPR) spectroscopy, applied to the same water sample volume and using the same US input parameters adopted in the simulation. Finally, the various US conditions are applied to two different set of cancer cell lines, a cervical adenocarcinoma and a hematological cancer, Burkitt's lymphoma. We hypothesize how the ROS generation can influence the recorded cell death. In a second set of experiments, the role of semiconductor metal oxide nanocrystals, i.e. zinc oxide, is also evaluated by adding them to the water and biological systems. In particular, the role of ZnO in enhancing the ROS production is verified. Furthermore, the interplay among US and ZnO nanocrystals is evaluated in provoking cancer cell death at specific conditions. This study demonstrates a useful correlation between numerical simulation and experimental acoustic validation as well as with ROS measurement at both qualitative and quantitative levels during US irradiation of simple water solution. It further tries to translate the obtained results to justify one of the possible mechanisms responsible of cancer cell death. It thus aims to pave the way for the use of US in cancer therapy and a better understanding on the non-thermal effect that a specific set of US parameters can have on cancer cells cultured in vitro.
超声波在临床诊断中已经得到广泛应用,现在正成为抗肿瘤治疗的一种强大而无害的工具,因为它能够通过惯性空化和温度升高对癌细胞造成损伤。目前的研究和临床试验集中在单独使用超声或与分子化合物、微泡或固态纳米颗粒结合使用,如热消融、药物声孔作用或声动力学治疗。在本工作中,我们讨论了超声的非热效应以及产生氧自由基的条件,以及它们在引发不同癌细胞系死亡中的作用。在这方面,我们建立了一个数学模型来预测在给定水样体积中的压力空间分布,从而获得在不同输入功率下应用超声的声压和声强的图谱。然后,我们通过直接声学测量和通过声化学发光(SCL)和电子顺磁共振(EPR)光谱检测活性氧物质(ROS)的产生来验证和验证这些数值结果,这些测量和检测应用于相同的水样体积,并使用模拟中采用的相同超声输入参数。最后,将各种超声条件应用于两种不同的癌细胞系,即宫颈腺癌和血液癌伯基特淋巴瘤。我们假设 ROS 的产生如何影响记录的细胞死亡。在第二组实验中,还通过将半导体金属氧化物纳米晶体(如氧化锌)添加到水中和生物系统中来评估它们的作用。特别验证了 ZnO 在增强 ROS 产生方面的作用。此外,还评估了超声在特定条件下引发癌细胞死亡时 ZnO 纳米晶体之间的相互作用。这项研究在定性和定量水平上证明了数值模拟与实验声学验证以及 ROS 测量之间的有用相关性,同时还证明了在简单水溶液的超声辐照过程中。它进一步试图将获得的结果转化为证明导致癌细胞死亡的一种可能机制之一。因此,它旨在为癌症治疗中的超声应用以及对体外培养的癌细胞的特定超声参数的非热效应提供更好的理解铺平道路。
Biomed Microdevices. 2022-10-24
Front Bioeng Biotechnol. 2019-11-26
Biomed Microdevices. 2024-8-19
Ultrasound Med Biol. 2019-1-11
J Cancer Res Clin Oncol. 2025-4-10