文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

超声辅助水氧化:揭示压电金属氧化物超声催化剂在癌症治疗中的作用。

Ultrasound-assisted water oxidation: unveiling the role of piezoelectric metal-oxide sonocatalysts for cancer treatment.

机构信息

Department of Applied Science and Technology, Politecnico Di Torino, C.So Duca Degli Abruzzi 24, 10129, Turin, Italy.

CESAM - Universidade de Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.

出版信息

Biomed Microdevices. 2024 Aug 19;26(3):37. doi: 10.1007/s10544-024-00720-3.


DOI:10.1007/s10544-024-00720-3
PMID:39160324
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11333555/
Abstract

Ultrasound radiation has been widely used in biomedical application for both diagnosis and therapy. Metal oxides nanoparticles (NPs), like ZnO or TiO NPs, have been widely demonstrated to act as excellent sonocatalysts and significantly enhance cavitation at their surface, making them optimal for sonodynamic cancer therapy. These NPs often possess semiconductive and piezoelectric properties that contribute to the complex phenomena occurring at the water-oxide interface during sonostimulation. Despite the great potential in applied sonocatalysis and water splitting, the complex mechanism that governs the phenomenon is still a research subject. This work investigates the role of piezoelectric ZnO micro- and nano-particles in ultrasound-assisted water oxidation. Three metal oxides presenting fundamental electronic and mechanical differences are evaluated in terms of ultrasound-triggered reactive oxygen species generation in aqueous media: electromechanically inert SiO NPs, semiconducting TiO NPs, piezoelectric and semiconducting ZnO micro- and nanoparticles with different surface areas and sizes. The presence of silver ions in the aqueous solution was further considered to impart a potential electron scavenging effects and better evaluate the oxygen generation performances of the different structures. Following sonoirradiation, the particles are optically and chemically analyzed to study the effect of sonostimulation at their surface. The production of gaseous molecular oxygen is measured, revealing the potential of piezoelectric particles to generate oxygen under hypoxic conditions typical of some cancer environments. Finally, the best candidates, i.e. ZnO nano and micro particles, were tested on osteosarcoma and glioblastoma cell lines to demonstrate their potential for cancer treatment.

摘要

超声辐射已广泛应用于生物医学诊断和治疗领域。金属氧化物纳米粒子(NPs),如 ZnO 或 TiO2 NPs,已被广泛证明是出色的声催化剂,并能显著增强其表面的空化作用,使其成为声动力学癌症治疗的理想选择。这些 NPs 通常具有半导体和压电特性,有助于解释在声刺激过程中发生在水-氧化物界面的复杂现象。尽管在应用声催化和水分解方面具有巨大潜力,但控制这一现象的复杂机制仍然是一个研究课题。本工作研究了压电 ZnO 微纳粒子在超声辅助水氧化中的作用。评估了三种具有基本电子和机械差异的金属氧化物,以评估它们在水介质中超声触发的活性氧物种生成的能力:电机械惰性的 SiO2 NPs、半导体 TiO2 NPs、具有不同表面积和尺寸的压电和半导体 ZnO 微纳粒子。还进一步考虑了在水溶液中存在银离子,以赋予潜在的电子捕获效应,并更好地评估不同结构的氧气生成性能。在超声照射后,通过光学和化学分析研究了表面声刺激的影响。测量了气态分子氧的产生,揭示了压电粒子在一些典型的癌症缺氧环境下产生氧气的潜力。最后,测试了最佳候选物 ZnO 纳米和微粒子对骨肉瘤和神经胶质瘤细胞系的作用,以证明它们在癌症治疗中的潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/c5bd472f2d33/10544_2024_720_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/fc0a6aff31c5/10544_2024_720_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/d0e7d330e4b3/10544_2024_720_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/46b74a6663a9/10544_2024_720_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/ff31b8d7abc6/10544_2024_720_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/3606b52bc59d/10544_2024_720_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/0268c85a536b/10544_2024_720_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/c5bd472f2d33/10544_2024_720_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/fc0a6aff31c5/10544_2024_720_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/d0e7d330e4b3/10544_2024_720_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/46b74a6663a9/10544_2024_720_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/ff31b8d7abc6/10544_2024_720_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/3606b52bc59d/10544_2024_720_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/0268c85a536b/10544_2024_720_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbef/11333555/c5bd472f2d33/10544_2024_720_Fig7_HTML.jpg

相似文献

[1]
Ultrasound-assisted water oxidation: unveiling the role of piezoelectric metal-oxide sonocatalysts for cancer treatment.

Biomed Microdevices. 2024-8-19

[2]
Synergistic biocidal effects of metal oxide nanoparticles-assisted ultrasound irradiation: Antimicrobial sonodynamic therapy against Streptococcus mutans biofilms.

Photodiagnosis Photodyn Ther. 2021-9

[3]
Titanium oxide shell coatings decrease the cytotoxicity of ZnO nanoparticles.

Chem Res Toxicol. 2011-2-22

[4]
Photodynamic therapy mediated antiproliferative activity of some metal-doped ZnO nanoparticles in human liver adenocarcinoma HepG2 cells under UV irradiation.

J Photochem Photobiol B. 2014-9-5

[5]
High-energy-surface engineered metal oxide micro- and nanocrystallites and their applications.

Acc Chem Res. 2013-12-17

[6]
Functional bioinspired nanocomposites for anticancer activity with generation of reactive oxygen species.

Chemosphere. 2023-1

[7]
No evidence of the genotoxic potential of gold, silver, zinc oxide and titanium dioxide nanoparticles in the SOS chromotest.

J Appl Toxicol. 2012-11-16

[8]
Quantitative Analysis of Reactive Oxygen Species Photogenerated on Metal Oxide Nanoparticles and Their Bacteria Toxicity: The Role of Superoxide Radicals.

Environ Sci Technol. 2017-8-16

[9]
Transport and retention of positively charged zinc oxide nanoparticles in saturated porous media: Effects of metal oxides and clays.

Environ Pollut. 2024-6-15

[10]
Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii.

J Hazard Mater. 2013-7-4

引用本文的文献

[1]
Emerging Piezoelectric Metamaterials for Biomedical Applications.

Mater Interfaces. 2024-12

本文引用的文献

[1]
Piezoelectric nanomaterials: latest applications in biomedicine and challenges in clinical translation.

Nanomedicine (Lond). 2024

[2]
Anti-CD38 targeted nanotrojan horses stimulated by acoustic waves as therapeutic nanotools selectively against Burkitt's lymphoma cells.

Discov Nano. 2024-2-14

[3]
Piezo/sono-catalytic activity of ZnO micro/nanoparticles for ROS generation as function of ultrasound frequencies and dissolved gases.

Ultrason Sonochem. 2023-7

[4]
Synergistic Phenomena between Iron-Doped ZnO Nanoparticles and Shock Waves Exploited against Pancreatic Cancer Cells.

ACS Appl Nano Mater. 2022-11-2

[5]
Application of nanosonosensitizer materials in cancer sono-dynamic therapy.

RSC Adv. 2022-8-15

[6]
Electrocatalytic Water Oxidation: An Overview With an Example of Translation From Lab to Market.

Front Chem. 2022-5-11

[7]
A Review of Titanium Dioxide (TiO)-Based Photocatalyst for Oilfield-Produced Water Treatment.

Membranes (Basel). 2022-3-19

[8]
Insight into Sonoluminescence Augmented by ZnO-Functionalized Nanoparticles.

ACS Omega. 2022-2-14

[9]
Sonodynamic Therapy (SDT) for Cancer Treatment: Advanced Sensitizers by Ultrasound Activation to Injury Tumor.

ACS Appl Bio Mater. 2020-6-15

[10]
Smart Shockwave Responsive Titania-Based Nanoparticles for Cancer Treatment.

Pharmaceutics. 2021-9-8

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索