Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.
Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
Cancer Med. 2023 Mar;12(5):6117-6128. doi: 10.1002/cam4.5341. Epub 2022 Oct 24.
INTRODUCTION: Analyzing longitudinal cancer quality-of-life (QoL) measurements and their impact on clinical outcomes may improve our understanding of patient trajectories during systemic therapy. We applied an unsupervised growth mixture modeling (GMM) approach to identify unobserved subpopulations ("patient clusters") in the CO.20 clinical trial longitudinal QoL data. Classes were then evaluated for differences in clinico-epidemiologic characteristics and overall survival (OS). METHODS AND MATERIALS: In CO.20, 750 chemotherapy-refractory metastatic colorectal cancer (CRC) patients were randomized to receive Brivanib+Cetuximab (n = 376, experimental arm) versus Cetuximab+Placebo (n = 374, standard arm) for 16 weeks. EORTC-QLQ-C30 QoL summary scores were calculated for each patient at seven time points, and GMM was applied to identify patient clusters (termed "classes"). Log-rank/Kaplan-Meier and multivariable Cox regression analyses were conducted to analyze the survival performance between classes. Cox analyses were used to explore the relationship between baseline QoL, individual slope, and the quadratic terms from the GMM output with OS. RESULTS: In univariable analysis, the linear mixed effect model (LMM) identified sex and ECOG Performance Status as strongly associated with the longitudinal QoL score (p < 0.01). The patients within each treatment arm were clustered into three distinct QoL-based classes by GMM, respectively. The three classes identified in the experimental (log-rank p-value = 0.00058) and in the control arms (p < 0.0001) each showed significantly different survival performance. The GMM's baseline, slope, and quadratic terms were each significantly associated with OS (p < 0.001). CONCLUSION: GMM can be used to analyze longitudinal QoL data in cancer studies, by identifying unobserved subpopulations (patient clusters). As demonstrated by CO.20 data, these classes can have important implications, including clinical prognostication.
简介:分析纵向癌症生存质量(QoL)测量及其对临床结局的影响,可能有助于我们了解患者在全身治疗期间的轨迹。我们应用无监督增长混合模型(GMM)方法分析 CO.20 临床试验纵向 QoL 数据中的未观察到的亚人群(“患者群”)。然后评估类别的临床流行病学特征和总生存(OS)差异。
方法和材料:在 CO.20 中,750 名化疗耐药转移性结直肠癌(CRC)患者被随机分配接受 Brivanib+Cetuximab(n=376,实验组)或 Cetuximab+安慰剂(n=374,标准组)治疗 16 周。对每位患者的 EORTC-QLQ-C30 QoL 总评分进行 7 个时间点的计算,并应用 GMM 识别患者群(称为“类”)。采用对数秩/Kaplan-Meier 和多变量 Cox 回归分析比较类之间的生存表现。Cox 分析用于探索基线 QoL、个体斜率和 GMM 输出的二次项与 OS 的关系。
结果:单变量分析中,线性混合效应模型(LMM)确定性别和 ECOG 表现状态与纵向 QoL 评分密切相关(p<0.01)。GMM 将每个治疗组内的患者聚类为三个不同的基于 QoL 的类。在实验组(log-rank p 值=0.00058)和对照组(p<0.0001)中分别确定的三个类具有显著不同的生存表现。GMM 的基线、斜率和二次项均与 OS 显著相关(p<0.001)。
结论:GMM 可用于分析癌症研究中的纵向 QoL 数据,方法是识别未观察到的亚人群(患者群)。如 CO.20 数据所示,这些类可能具有重要意义,包括临床预后。
Clin Colorectal Cancer. 2022-6
Cochrane Database Syst Rev. 2022-2-1
Turk J Gastroenterol. 2022-6
Glob Health Epidemiol Genom. 2021
J Gastrointest Oncol. 2019-6