文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用增长混合模型对纵向生活质量测量进行聚类,以进行临床预后:CCTG/AGITG CO.20 试验的实施。

Clustering on longitudinal quality-of-life measurements using growth mixture models for clinical prognosis: Implementation on CCTG/AGITG CO.20 trial.

机构信息

Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.

Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.

出版信息

Cancer Med. 2023 Mar;12(5):6117-6128. doi: 10.1002/cam4.5341. Epub 2022 Oct 24.


DOI:10.1002/cam4.5341
PMID:36281472
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10028035/
Abstract

INTRODUCTION: Analyzing longitudinal cancer quality-of-life (QoL) measurements and their impact on clinical outcomes may improve our understanding of patient trajectories during systemic therapy. We applied an unsupervised growth mixture modeling (GMM) approach to identify unobserved subpopulations ("patient clusters") in the CO.20 clinical trial longitudinal QoL data. Classes were then evaluated for differences in clinico-epidemiologic characteristics and overall survival (OS). METHODS AND MATERIALS: In CO.20, 750 chemotherapy-refractory metastatic colorectal cancer (CRC) patients were randomized to receive Brivanib+Cetuximab (n = 376, experimental arm) versus Cetuximab+Placebo (n = 374, standard arm) for 16 weeks. EORTC-QLQ-C30 QoL summary scores were calculated for each patient at seven time points, and GMM was applied to identify patient clusters (termed "classes"). Log-rank/Kaplan-Meier and multivariable Cox regression analyses were conducted to analyze the survival performance between classes. Cox analyses were used to explore the relationship between baseline QoL, individual slope, and the quadratic terms from the GMM output with OS. RESULTS: In univariable analysis, the linear mixed effect model (LMM) identified sex and ECOG Performance Status as strongly associated with the longitudinal QoL score (p < 0.01). The patients within each treatment arm were clustered into three distinct QoL-based classes by GMM, respectively. The three classes identified in the experimental (log-rank p-value = 0.00058) and in the control arms (p < 0.0001) each showed significantly different survival performance. The GMM's baseline, slope, and quadratic terms were each significantly associated with OS (p < 0.001). CONCLUSION: GMM can be used to analyze longitudinal QoL data in cancer studies, by identifying unobserved subpopulations (patient clusters). As demonstrated by CO.20 data, these classes can have important implications, including clinical prognostication.

摘要

简介:分析纵向癌症生存质量(QoL)测量及其对临床结局的影响,可能有助于我们了解患者在全身治疗期间的轨迹。我们应用无监督增长混合模型(GMM)方法分析 CO.20 临床试验纵向 QoL 数据中的未观察到的亚人群(“患者群”)。然后评估类别的临床流行病学特征和总生存(OS)差异。

方法和材料:在 CO.20 中,750 名化疗耐药转移性结直肠癌(CRC)患者被随机分配接受 Brivanib+Cetuximab(n=376,实验组)或 Cetuximab+安慰剂(n=374,标准组)治疗 16 周。对每位患者的 EORTC-QLQ-C30 QoL 总评分进行 7 个时间点的计算,并应用 GMM 识别患者群(称为“类”)。采用对数秩/Kaplan-Meier 和多变量 Cox 回归分析比较类之间的生存表现。Cox 分析用于探索基线 QoL、个体斜率和 GMM 输出的二次项与 OS 的关系。

结果:单变量分析中,线性混合效应模型(LMM)确定性别和 ECOG 表现状态与纵向 QoL 评分密切相关(p<0.01)。GMM 将每个治疗组内的患者聚类为三个不同的基于 QoL 的类。在实验组(log-rank p 值=0.00058)和对照组(p<0.0001)中分别确定的三个类具有显著不同的生存表现。GMM 的基线、斜率和二次项均与 OS 显著相关(p<0.001)。

结论:GMM 可用于分析癌症研究中的纵向 QoL 数据,方法是识别未观察到的亚人群(患者群)。如 CO.20 数据所示,这些类可能具有重要意义,包括临床预后。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29b/10028035/1790c57f267f/CAM4-12-6117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29b/10028035/c18ef143317e/CAM4-12-6117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29b/10028035/1c9454a97095/CAM4-12-6117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29b/10028035/1790c57f267f/CAM4-12-6117-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29b/10028035/c18ef143317e/CAM4-12-6117-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29b/10028035/1c9454a97095/CAM4-12-6117-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a29b/10028035/1790c57f267f/CAM4-12-6117-g003.jpg

相似文献

[1]
Clustering on longitudinal quality-of-life measurements using growth mixture models for clinical prognosis: Implementation on CCTG/AGITG CO.20 trial.

Cancer Med. 2023-3

[2]
Phase III randomized, placebo-controlled study of cetuximab plus brivanib alaninate versus cetuximab plus placebo in patients with metastatic, chemotherapy-refractory, wild-type K-RAS colorectal carcinoma: the NCIC Clinical Trials Group and AGITG CO.20 Trial.

J Clin Oncol. 2013-5-20

[3]
Health-related quality of life in patients with microsatellite instability-high or mismatch repair deficient metastatic colorectal cancer treated with first-line pembrolizumab versus chemotherapy (KEYNOTE-177): an open-label, randomised, phase 3 trial.

Lancet Oncol. 2021-5

[4]
The prognostic value of WHO performance status in relation to quality of life in advanced colorectal cancer patients.

Eur J Cancer. 2016-10

[5]
Health-Related Quality of Life Analysis in Metastatic Colorectal Cancer Patients Treated by Second-Line Chemotherapy, Associated With Either Cetuximab or Bevacizumab: The PRODIGE 18 Randomized Phase II Study.

Clin Colorectal Cancer. 2022-6

[6]
Quality of Life and Survival of Metastatic Colorectal Cancer Patients Treated With Trifluridine-Tipiracil (QUALITAS).

Clin Colorectal Cancer. 2022-6

[7]
Quality of life of patients receiving platinum-based chemotherapy plus cetuximab first line for recurrent and/or metastatic squamous cell carcinoma of the head and neck.

Ann Oncol. 2010-3-24

[8]
Quality of Life Analysis in Patients With RAS Wild-Type Metastatic Colorectal Cancer Treated With First-Line Cetuximab Plus Chemotherapy.

Clin Colorectal Cancer. 2017-6

[9]
Quality of life in patients with K-RAS wild-type colorectal cancer: the CO.20 phase 3 randomized trial.

Cancer. 2013-10-11

[10]
Folic acid supplementation and malaria susceptibility and severity among people taking antifolate antimalarial drugs in endemic areas.

Cochrane Database Syst Rev. 2022-2-1

引用本文的文献

[1]
Trajectories of Cancer Antigen 125 (CA125) Within 3 and 6 Months After the Initiation of Chemotherapy Treatment for Advanced Ovarian Cancer and Clinical Outcomes: A Secondary Analysis of Data from a Phase III Clinical Trial.

Curr Oncol. 2025-7-7

[2]
Understanding road accident injury dynamics in Iran: a growth mixture modelling perspective.

BMJ Open. 2025-2-5

本文引用的文献

[1]
Modeling the Trend Changes of Liver Cancer Mortality in the 6 WHO Regions.

Turk J Gastroenterol. 2022-6

[2]
The Main Patterns in the Trend Change of Stomach Cancer Incidence amongst Selected African Countries.

Glob Health Epidemiol Genom. 2021

[3]
Symptom trajectories in breast cancer survivors: growth mixture analysis of patient-reported pain, fatigue, insomnia, breast and arm symptoms.

Acta Oncol. 2021-12

[4]
Determinants of Distinct Trajectories of Fatigue in Patients Undergoing Chemotherapy for a Metastatic Colorectal Cancer: 6-Month Follow-up Using Growth Mixture Modeling.

J Pain Symptom Manage. 2022-1

[5]
Growth mixture models: a case example of the longitudinal analysis of patient-reported outcomes data captured by a clinical registry.

BMC Med Res Methodol. 2021-4-21

[6]
Preoperative quality of life as prediction for severe postoperative complications in gynecological cancer surgery: results of a prospective study.

Arch Gynecol Obstet. 2021-4

[7]
Quality of life and the negative impact of comorbidities in long-term colorectal cancer survivors: a population-based comparison.

J Cancer Surviv. 2020-10

[8]
Painful and non-painful chemotherapy-induced peripheral neuropathy and quality of life in colorectal cancer survivors: results from the population-based PROFILES registry.

Support Care Cancer. 2020-12

[9]
Does quality of life return to pre-treatment levels five years after curative intent surgery for colorectal cancer? Evidence from the ColoREctal Wellbeing (CREW) study.

PLoS One. 2020-4-9

[10]
Gender differences in health-related quality of life among patients with colorectal cancer.

J Gastrointest Oncol. 2019-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索