Suppr超能文献

增长混合模型:以临床注册中心采集的患者报告结局数据的纵向分析为例

Growth mixture models: a case example of the longitudinal analysis of patient-reported outcomes data captured by a clinical registry.

机构信息

School of Nursing, University of British Columbia, Vancouver, Canada.

School of Nursing, Trinity Western University, 22500 University Drive, V2Y 1Y1, Langley, BC, Canada.

出版信息

BMC Med Res Methodol. 2021 Apr 21;21(1):79. doi: 10.1186/s12874-021-01276-z.

Abstract

BACKGROUND

An assumption in many analyses of longitudinal patient-reported outcome (PRO) data is that there is a single population following a single health trajectory. One approach that may help researchers move beyond this traditional assumption, with its inherent limitations, is growth mixture modelling (GMM), which can identify and assess multiple unobserved trajectories of patients' health outcomes. We describe the process that was undertaken for a GMM analysis of longitudinal PRO data captured by a clinical registry for outpatients with atrial fibrillation (AF).

METHODS

This expository paper describes the modelling approach and some methodological issues that require particular attention, including (a) determining the metric of time, (b) specifying the GMMs, and (c) including predictors of membership in the identified latent classes (groups or subtypes of patients with distinct trajectories). An example is provided of a longitudinal analysis of PRO data (patients' responses to the Atrial Fibrillation Effect on QualiTy-of-Life (AFEQT) Questionnaire) collected between 2008 and 2016 for a population-based cardiac registry and deterministically linked with administrative health data.

RESULTS

In determining the metric of time, multiple processes were required to ensure that "time" accounted for both the frequency and timing of the measurement occurrences in light of the variability in both the number of measures taken and the intervals between those measures. In specifying the GMM, convergence issues, a common problem that results in unreliable model estimates, required constrained parameter exploration techniques. For the identification of predictors of the latent classes, the 3-step (stepwise) approach was selected such that the addition of predictor variables did not change class membership itself.

CONCLUSIONS

GMM can be a valuable tool for classifying multiple unique PRO trajectories that have previously been unobserved in real-world applications; however, their use requires substantial transparency regarding the processes underlying model building as they can directly affect the results and therefore their interpretation.

摘要

背景

许多纵向患者报告结局(PRO)数据分析都基于一个假设,即存在一个单一的人群遵循单一的健康轨迹。一种可能有助于研究人员超越这一传统假设的方法是增长混合建模(GMM),它可以识别和评估患者健康结果的多个未观察到的轨迹。我们描述了用于对心房颤动(AF)门诊患者临床登记处纵向 PRO 数据进行 GMM 分析的过程。

方法

本说明性论文介绍了建模方法和一些需要特别注意的方法问题,包括(a)确定时间度量,(b)指定 GMM,以及(c)包括识别的潜在类别(具有不同轨迹的患者的组或亚型)成员的预测因子。提供了一个纵向 PRO 数据分析的示例(患者对心房颤动质量生活影响问卷(AFEQT)的反应),该数据是在 2008 年至 2016 年期间为基于人群的心脏登记处收集的,并与行政健康数据确定性链接。

结果

在确定时间度量时,需要多个过程来确保“时间”既考虑了测量发生的频率,又考虑了测量次数和测量之间间隔的可变性。在指定 GMM 时,需要使用受约束的参数探索技术来解决收敛问题,这是一种导致模型估计不可靠的常见问题。对于潜在类别的预测因子的识别,选择了 3 步(逐步)方法,使得添加预测变量本身不会改变类别成员身份。

结论

GMM 可以成为一种有价值的工具,用于对现实世界应用中以前未观察到的多个独特 PRO 轨迹进行分类;但是,它们的使用需要对模型构建背后的过程有大量的透明度,因为它们会直接影响结果,从而影响其解释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5cb6/8058975/2b8f598aa566/12874_2021_1276_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验