Theoretical Chemistry Institute, Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin53706, United States.
J Phys Chem B. 2022 Nov 3;126(43):8632-8645. doi: 10.1021/acs.jpcb.2c04431. Epub 2022 Oct 25.
The 3D reference interaction site model (3DRISM) provides an efficient grid-based solvation model to compute the structural and thermodynamic properties of biomolecules in aqueous solutions. However, it remains challenging for existing 3DRISM methods to correctly predict water distributions around negatively charged solute molecules. In this paper, we first show that this challenge is mainly due to the orientation of water molecules in the first solvation shell of the negatively charged solute molecules. To properly consider this orientational preference, position-dependent two-body intramolecular correlations of solvent need to be included in the 3DRISM theory, but direct evaluations of these position-dependent two-body intramolecular correlations remain numerically intractable. To address this challenge, we introduce the Ion-Dipole Correction (IDC) to the 3DRISM theory, in which we incorporate the orientation preference of water molecules via an additional solute-solvent interaction term (i.e., the ion-dipole interaction) while keeping the formulism of the 3DRISM equation unchanged. We prove that this newly introduced IDC term is equivalent to an effective direct correlation function which can effectively consider the orientation effect that arises from position dependent two-body correlations. We first quantitatively validate our 3DRISM-IDC theory combined with the PSE3 closure on Cl, [ClO] (a two-site anion), and [NO] (a three-site anion). For all three anions, we show that our 3DRISM-IDC theory significantly outperforms the 3DRISM theory in accurately predicting the solvation structures in comparison to MD simulations, including RDFs and 3D water distributions. Furthermore, we have also demonstrated that the 3DRISM-IDC can improve the accuracy of hydration free-energy calculation for Cl. We further demonstrate that our 3DRISM-IDC theory yields significant improvements over the 3DRISM theory when applied to compute the solvation structures for various negatively charged solute molecules, including adenosine triphosphate (ATP), a short peptide containing 19 residues, a DNA hairpin containing 24 nucleotides, and a riboswitch RNA molecule with 77 nucleotides. We expect that our 3DRISM-IDC-PSE3 solvation model holds great promise to be widely applied to study solvation properties for nucleic acids and other biomolecules containing negatively charged functional groups.
三维参考相互作用位点模型(3DRISM)提供了一种有效的基于网格的溶剂化模型,用于计算水溶液中生物分子的结构和热力学性质。然而,现有的 3DRISM 方法在正确预测带负电荷溶质分子周围的水分布方面仍然具有挑战性。在本文中,我们首先表明,这一挑战主要归因于带负电荷溶质分子第一溶剂化壳层中水分子的取向。为了正确考虑这种取向偏好,需要在 3DRISM 理论中包含溶剂的位置相关两体分子内相关,但是这些位置相关两体分子内相关的直接评估在数值上仍然难以处理。为了解决这一挑战,我们在 3DRISM 理论中引入了离子-偶极校正(IDC),其中我们通过附加的溶质-溶剂相互作用项(即离子-偶极相互作用)来结合水分子的取向偏好,同时保持 3DRISM 方程的公式不变。我们证明,这个新引入的 IDC 项等效于一个有效的直接相关函数,它可以有效地考虑由于位置相关两体相关产生的取向效应。我们首先通过 PSE3 封闭在 Cl、[ClO](双位点阴离子)和[NO](三位点阴离子)上定量验证了我们的 3DRISM-IDCPSE3 理论。对于所有三种阴离子,我们表明,与 MD 模拟相比,我们的 3DRISM-IDCPSE3 理论在准确预测溶剂化结构方面明显优于 3DRISM 理论,包括 RDF 和三维水分布。此外,我们还证明,3DRISM-IDC 可以提高 Cl 的水合自由能计算的准确性。我们进一步证明,当应用于计算各种带负电荷溶质分子的溶剂化结构时,我们的 3DRISM-IDCPSE3 理论相对于 3DRISM 理论有显著的改进,包括三磷酸腺苷(ATP)、含有 19 个残基的短肽、含有 24 个核苷酸的 DNA 发夹和含有 77 个核苷酸的核酶 RNA 分子。我们预计我们的 3DRISM-IDCPSE3 溶剂化模型具有广泛应用于研究含负电荷官能团的核酸和其他生物分子的溶剂化性质的巨大潜力。