Suppr超能文献

基于对比学习的自适应正负样本特征提取框架。

Feature extraction framework based on contrastive learning with adaptive positive and negative samples.

机构信息

College of Information and Electrical Engineering, China Agricultural University, Beijing 100083, PR China; National Innovation Center for Digital Fishery, China Agricultural University, Beijing 100083, PR China.

College of Science, China Agricultural University, Beijing 100083, PR China.

出版信息

Neural Netw. 2022 Dec;156:244-257. doi: 10.1016/j.neunet.2022.09.029. Epub 2022 Oct 3.

Abstract

Feature extraction is an efficient approach for alleviating the issue of dimensionality in high-dimensional data. As a popular self-supervised learning method, contrastive learning has recently garnered considerable attention. In this study, we propose a unified feature extraction framework based on contrastive learning with adaptive positive and negative samples (CL-FEFA) that is suitable for unsupervised, supervised, and semi-supervised feature extraction. CL-FEFA constructs adaptively positive and negative samples from the result of feature extraction, which makes them more appropriate and accurate. Meanwhile, the discriminative features are extracted based on adaptive positive and negative samples, which will make the intra-class embedded samples more compact and the inter-class embedded samples more dispersed. In the process, using the potential structure information of subspace samples to dynamically construct positive and negative samples can make our framework more robust to noisy data. Furthermore, it is proven that CL-FEFA actually maximizes the mutual information of positive samples, which captures non-linear statistical dependencies between similar samples in potential structure space and thus can act as a measure of true dependence. This also provides theoretical support for its advantages in feature extraction. The final numerical experiments prove that the proposed framework has a strong advantage over traditional feature extraction methods and contrastive learning methods.

摘要

特征提取是缓解高维数据维度问题的有效方法。对比学习作为一种流行的自监督学习方法,最近受到了广泛关注。在这项研究中,我们提出了一种基于对比学习的自适应正负样本的统一特征提取框架(CL-FEFA),适用于无监督、监督和半监督特征提取。CL-FEFA 从特征提取的结果中自适应地构建正负样本,使它们更合适和准确。同时,基于自适应正负样本提取判别特征,使类内嵌入样本更加紧凑,类间嵌入样本更加分散。在这个过程中,利用子空间样本的潜在结构信息来动态构建正负样本,可以使我们的框架对噪声数据更加鲁棒。此外,还证明了 CL-FEFA 实际上最大化了正样本的互信息,从而捕获了潜在结构空间中相似样本之间的非线性统计依赖性,因此可以作为真实依赖性的度量。这也为其在特征提取方面的优势提供了理论支持。最后的数值实验证明,所提出的框架在特征提取方面比传统的特征提取方法和对比学习方法具有更强的优势。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验