Department of Biological and Environmental Engineering, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States.
Department of Civil and Environmental Engineering, McCormick School of Engineering and Applied Science, Northwestern University, Evanston, Illinois 60208, United States.
Environ Sci Technol. 2022 Nov 15;56(22):16441-16452. doi: 10.1021/acs.est.2c04948. Epub 2022 Oct 25.
Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from . Trends of δO values in released orthophosphate during each enzyme-catalyzed reaction in O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.
在环境基质中普遍存在的磷 (P) 储备中,有核糖核酸 (RNA) 和多聚磷酸盐 (polyP),它们分别是有机和无机含磷生物聚合物。与这些生物聚合物中的 P 回收相关的是,植物和土壤微生物分泌的不同酸性磷酸酶 (AP) 的动力学和机制仍有许多未知之处。在这里,我们研究了两种常见的 AP(来自甘薯的植物紫色 AP [PAP] 和真菌植酸酶)对 RNA 和 polyP 的去磷酸化作用。在每种酶催化反应中,释放的正磷酸盐中 δO 值的趋势表明了不同的反应程度。随后的酶动力学实验表明,植酸酶对 polyP 去磷酸化的最大速率比甘薯 PAP 高 10 倍,而甘薯 PAP 对 RNA 的去磷酸化速率比植酸酶快 6 倍。两种酶对 RNA 的反应性比 polyP 低 3 个数量级。我们使用高分辨率质谱和 P 核磁共振分别确定了 RNA 的磷酸二酯酶-单酯酶机制和 polyP 的末端磷酸酶机制。用八种植物和真菌 AP 结构的分子建模预测了与相对反应动力学一致的底物结合相互作用。我们的研究结果表明,不同生物来源的磷酸酶对 P-聚合物进行酶促 P 回收具有一定的优先级,从而影响了 RNA 在环境基质中的相对较长的停留时间与 polyP。这项研究进一步阐明了通过工程策略来增强生物聚合物衍生 P 的酶促回收的方法,除了可以提高植物和微生物对这种 P 回收的环境预测。