Suppr超能文献

用于在线非线性多输入多输出系统辨识的向量值再生核希尔伯特空间中的KLMS算法。

KLMS algorithm in Vector-Valued RKHS for online nonlinear MIMO systems identification.

作者信息

Ilyes El Aissi

机构信息

Department of industrial electronics, National Engineering School of Sousse, University of Sousse, Tunisia.

出版信息

ISA Trans. 2023 Apr;135:272-289. doi: 10.1016/j.isatra.2022.09.037. Epub 2022 Sep 29.

Abstract

This paper proposes an extension of the KLMS algorithm to the Vector-Valued Reproducing Kernel Hilbert Space (VV-RKHS), enabling the use of the operator-valued kernel (OV-kernel) in the online identification of multi-input multi-output (MIMO) nonlinear systems. The yielded multivariate kernel model offers more design flexibility and involves fewer parameters than other vector-valued KLMS algorithms present in the literature. Conditions ensuring the convergence of the proposed OV-KLMS algorithm are given. Experiments on a multivariate chaotic attractor as well as numerical simulations are carried out and show the effectiveness of the proposed algorithm.

摘要

本文提出将KLMS算法扩展到向量值再生核希尔伯特空间(VV-RKHS),使得在多输入多输出(MIMO)非线性系统的在线辨识中能够使用算子值核(OV核)。所得的多变量核模型比文献中现有的其他向量值KLMS算法具有更大的设计灵活性且涉及的参数更少。给出了确保所提OV-KLMS算法收敛的条件。对一个多变量混沌吸引子进行了实验以及数值模拟,结果表明了所提算法的有效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验