Ilyes El Aissi
Department of industrial electronics, National Engineering School of Sousse, University of Sousse, Tunisia.
ISA Trans. 2023 Apr;135:272-289. doi: 10.1016/j.isatra.2022.09.037. Epub 2022 Sep 29.
This paper proposes an extension of the KLMS algorithm to the Vector-Valued Reproducing Kernel Hilbert Space (VV-RKHS), enabling the use of the operator-valued kernel (OV-kernel) in the online identification of multi-input multi-output (MIMO) nonlinear systems. The yielded multivariate kernel model offers more design flexibility and involves fewer parameters than other vector-valued KLMS algorithms present in the literature. Conditions ensuring the convergence of the proposed OV-KLMS algorithm are given. Experiments on a multivariate chaotic attractor as well as numerical simulations are carried out and show the effectiveness of the proposed algorithm.
本文提出将KLMS算法扩展到向量值再生核希尔伯特空间(VV-RKHS),使得在多输入多输出(MIMO)非线性系统的在线辨识中能够使用算子值核(OV核)。所得的多变量核模型比文献中现有的其他向量值KLMS算法具有更大的设计灵活性且涉及的参数更少。给出了确保所提OV-KLMS算法收敛的条件。对一个多变量混沌吸引子进行了实验以及数值模拟,结果表明了所提算法的有效性。