Suppr超能文献

基于再生核希尔伯特空间 (RKHS) 框架的神经时空尖峰模式自适应逆控制。

Adaptive inverse control of neural spatiotemporal spike patterns with a reproducing kernel Hilbert space (RKHS) framework.

机构信息

Department of Electrical Engineering, University of Florida, Gainesville, FL 32611 USA.

出版信息

IEEE Trans Neural Syst Rehabil Eng. 2013 Jul;21(4):532-43. doi: 10.1109/TNSRE.2012.2200300. Epub 2012 Aug 1.

Abstract

The precise control of spiking in a population of neurons via applied electrical stimulation is a challenge due to the sparseness of spiking responses and neural system plasticity. We pose neural stimulation as a system control problem where the system input is a multidimensional time-varying signal representing the stimulation, and the output is a set of spike trains; the goal is to drive the output such that the elicited population spiking activity is as close as possible to some desired activity, where closeness is defined by a cost function. If the neural system can be described by a time-invariant (homogeneous) model, then offline procedures can be used to derive the control procedure; however, for arbitrary neural systems this is not tractable. Furthermore, standard control methodologies are not suited to directly operate on spike trains that represent both the target and elicited system response. In this paper, we propose a multiple-input multiple-output (MIMO) adaptive inverse control scheme that operates on spike trains in a reproducing kernel Hilbert space (RKHS). The control scheme uses an inverse controller to approximate the inverse of the neural circuit. The proposed control system takes advantage of the precise timing of the neural events by using a Schoenberg kernel defined directly in the space of spike trains. The Schoenberg kernel maps the spike train to an RKHS and allows linear algorithm to control the nonlinear neural system without the danger of converging to local minima. During operation, the adaptation of the controller minimizes a difference defined in the spike train RKHS between the system and the target response and keeps the inverse controller close to the inverse of the current neural circuit, which enables adapting to neural perturbations. The results on a realistic synthetic neural circuit show that the inverse controller based on the Schoenberg kernel outperforms the decoding accuracy of other models based on the conventional rate representation of neural signal (i.e., spikernel and generalized linear model). Moreover, after a significant perturbation of the neuron circuit, the control scheme can successfully drive the elicited responses close to the original target responses.

摘要

通过施加电刺激来精确控制神经元群体中的尖峰发放是一项挑战,这是因为尖峰发放响应的稀疏性和神经系统的可塑性。我们将神经刺激视为一个系统控制问题,其中系统输入是一个多维时变信号,代表刺激,输出是一组尖峰序列;目标是驱动输出,使得诱发的群体尖峰活动尽可能接近某些期望的活动,其中接近程度由代价函数定义。如果神经系统可以用时不变(齐次)模型来描述,那么可以使用离线程序来推导控制程序;然而,对于任意的神经系统,这是不可行的。此外,标准的控制方法不适用于直接作用于代表目标和诱发系统响应的尖峰序列。在本文中,我们提出了一种多输入多输出(MIMO)自适应逆控制方案,该方案在再生核希尔伯特空间(RKHS)中对尖峰序列进行操作。控制方案使用逆控制器来近似神经电路的逆。所提出的控制系统利用神经事件的精确时间,使用直接在尖峰序列空间中定义的 Schoenberg 核。Schoenberg 核将尖峰序列映射到 RKHS,并允许使用线性算法来控制非线性神经系统,而不会有陷入局部最小值的危险。在运行时,控制器的自适应过程在尖峰序列 RKHS 中定义系统和目标响应之间的差异最小化,并使逆控制器接近当前神经电路的逆,从而能够适应神经干扰。在一个现实的合成神经电路上的结果表明,基于 Schoenberg 核的逆控制器在基于神经信号的传统速率表示(即尖峰核和广义线性模型)的其他模型的解码精度上表现更好。此外,在神经元电路受到显著干扰后,控制方案可以成功地将诱发的响应驱动到接近原始目标响应的位置。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验