Zhang Yaoxin, Yu Zhen, Qu Hao, Guo Shuai, Yang Jiachen, Zhang Songlin, Yang Lin, Cheng Shaoan, Wang John, Tan Swee Ching
Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, Singapore.
State Key Laboratory of Clean Energy Utilization, Department of Energy Engineering, Zhejiang University, Hangzhou, 310027, P. R. China.
Adv Mater. 2024 Mar;36(12):e2208081. doi: 10.1002/adma.202208081. Epub 2023 Jan 8.
The emerging moisture-driven energy generation (MEG) technology opens up new possibilities for humidity-responsive materials, devices, and interdisciplinary opportunities in fields like information security. However, such potential remains untapped. Here, an original MEG structure with a hygroionic energy-conversion route by selective coating of ionic hygroscopic hydrogels on a carbon black surface is reported. The hygroionic route features a process in which the scavenged energy is stored in the electrical double layers formed at the interfaces between the ionic hydrogel and the carbon nanoparticles. The resultant electrical field developed across the hydrogel-coated wet carbon and the rest of the dry carbon area is thus durably lasted. Based on this unique structure, hygroelectronic information interfaces (HEII) for humidity-regulated information encryption and display are put forward by devising hydrogel patterns on a carbon platform. Further by tuning the hygroscopicity of the ionic hydrogels and incorporating encoding methods (e.g., Morse code), it is demonstrated that the HEII platform is programmable to carry different information in certain humidity ranges. Unlike those conventional anti-counterfeiting methods that optically reveal the hidden information once the required stimulus is provided, the new HEII serves as a hierarchical solution for high-security encryption and display.
新兴的湿度驱动能量产生(MEG)技术为湿度响应材料、设备以及信息安全等领域的跨学科发展带来了新的可能性。然而,这种潜力尚未得到充分挖掘。在此,我们报道了一种通过在炭黑表面选择性涂覆离子吸湿水凝胶构建的具有吸湿离子能量转换路径的新型MEG结构。吸湿离子路径的特点是,收集到的能量存储在离子水凝胶与碳纳米颗粒界面处形成的双电层中。由此在涂覆水凝胶的湿碳与其余干碳区域之间产生的电场得以持久维持。基于这种独特结构,通过在碳平台上设计水凝胶图案,提出了用于湿度调节信息加密和显示的湿电子信息界面(HEII)。进一步通过调节离子水凝胶的吸湿性并结合编码方法(如摩尔斯电码),证明了HEII平台在特定湿度范围内可进行编程以携带不同信息。与那些一旦提供所需刺激就通过光学方式揭示隐藏信息的传统防伪方法不同,新型HEII为高安全性加密和显示提供了一种分层解决方案。