Suppr超能文献

凝胶老化和电极腐蚀对基于直接激光写入碳化的水凝胶基湿电发电机性能的影响。

Effect of gel ageing and electrode corrosion on the performance of direct laser writing carbonization-enabled hydrogel-based moist-electric generators.

作者信息

Pi Xuewei, Yao Yanbo, Qin Dini, Liu Tao

机构信息

College of Chemistry, Chemical Engineering and Materials Science, Soochow University Soochow 215123 P. R. China

School of Materials and Packaging Engineering, Fujian Polytechnic Normal University Fuqing 350300 P. R. China

出版信息

RSC Adv. 2025 Jun 3;15(23):18548-18558. doi: 10.1039/d5ra02872h. eCollection 2025 May 29.

Abstract

The combined use of hydrogel active materials and porous and asymmetric electrodes enables the development of high-performance and high-power output moist-electric generators (MEGs). Herein, we report a direct laser writing carbonization (DLWc)-enabled approach for cost-effectively manufacturing the porous carbon electrode that can be easily integrated and assembled with the hydrogel active material for the scalable fabrication of MEGs. With the hydrogel active material composed of poly(vinyl alcohol) (PVA), poly(acrylic acid) (PAA), phytic acid (PA), glycerol and water, the best performing DLWc-enabled PVA/PAA/PA hydrogel-based MEG exhibited an open-circuit voltage of ∼0.8 V and a short-circuit current density of ∼110 μA cm and delivered stable operation for more than 300 h in an ambient environment. In-depth studies further revealed the effect of time-ageing treatment of the hydrogel active material on its ionic conductivity and water uptake ability and the power performance of the finally assembled MEGs. Lastly, the combined investigations using microscopy, spectroscopy and electrochemical corrosion tests allowed us to unambiguously identify the critical roles of the corrosion reaction occurring at the metallic electrodes in enhancing the voltage and current performance of the hydrogel-based MEG.

摘要

水凝胶活性材料与多孔不对称电极的联合使用,能够开发出高性能、高功率输出的湿电发电机(MEG)。在此,我们报告一种基于直接激光写入碳化(DLWc)的方法,用于经济高效地制造多孔碳电极,该电极可轻松与水凝胶活性材料集成和组装,以实现MEG的可扩展制造。对于由聚乙烯醇(PVA)、聚丙烯酸(PAA)、植酸(PA)、甘油和水组成的水凝胶活性材料,性能最佳的基于DLWc的PVA/PAA/PA水凝胶基MEG在环境条件下表现出约0.8 V的开路电压和约110 μA cm的短路电流密度,并能稳定运行超过300小时。深入研究进一步揭示了水凝胶活性材料的时效处理对其离子电导率、吸水能力以及最终组装的MEG功率性能的影响。最后,通过显微镜、光谱学和电化学腐蚀测试的联合研究,我们能够明确识别金属电极处发生的腐蚀反应在提高水凝胶基MEG的电压和电流性能方面的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d260/12132101/b2eebedf856b/d5ra02872h-f1.jpg

相似文献

2
High-performance, breathable and flame-retardant moist-electric generator based on asymmetrical nanofiber membrane assembly.
J Colloid Interface Sci. 2024 Oct;671:205-215. doi: 10.1016/j.jcis.2024.05.147. Epub 2024 May 23.
4
Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation.
Adv Mater. 2022 May;34(21):e2200693. doi: 10.1002/adma.202200693. Epub 2022 Apr 24.
5
Elastomeric Ionic Hydrogel-Based Flexible Moisture-Electric Generator for Next-Generation Wearable Electronics.
ACS Appl Mater Interfaces. 2024 Sep 4;16(35):46844-46857. doi: 10.1021/acsami.4c11907. Epub 2024 Aug 20.
6
Moisture-Electric Generators Working in Subzero Environments Based on Laser-Engraved Hygroscopic Hydrogel Arrays.
ACS Nano. 2025 Jan 28;19(3):3807-3817. doi: 10.1021/acsnano.4c14996. Epub 2025 Jan 15.
7
One-Step Preparation of a Highly Stretchable, Conductive, and Transparent Poly(vinyl alcohol)-Phytic Acid Hydrogel for Casual Writing Circuits.
ACS Appl Mater Interfaces. 2019 Sep 4;11(35):32441-32448. doi: 10.1021/acsami.9b12626. Epub 2019 Aug 21.
8
High-Performance, Highly Stretchable, Flexible Moist-Electric Generators via Molecular Engineering of Hydrogels.
Adv Mater. 2023 May;35(20):e2300398. doi: 10.1002/adma.202300398. Epub 2023 Mar 23.
9
Enhancing the Performance of a Stretchable and Transparent Triboelectric Nanogenerator by Optimizing the Hydrogel Ionic Electrode Property.
ACS Appl Mater Interfaces. 2020 May 20;12(20):23474-23483. doi: 10.1021/acsami.0c04219. Epub 2020 May 8.
10
Robustly and Intrinsically Stretchable Ionic Gel-Based Moisture-Enabled Power Generator with High Human Body Conformality.
ACS Nano. 2024 May 14;18(19):12096-12104. doi: 10.1021/acsnano.3c08543. Epub 2024 Apr 30.

本文引用的文献

1
Robustly and Intrinsically Stretchable Ionic Gel-Based Moisture-Enabled Power Generator with High Human Body Conformality.
ACS Nano. 2024 May 14;18(19):12096-12104. doi: 10.1021/acsnano.3c08543. Epub 2024 Apr 30.
2
High-Performance, Highly Stretchable, Flexible Moist-Electric Generators via Molecular Engineering of Hydrogels.
Adv Mater. 2023 May;35(20):e2300398. doi: 10.1002/adma.202300398. Epub 2023 Mar 23.
3
Moisture-Enabled Electricity from Hygroscopic Materials: A New Type of Clean Energy.
Adv Mater. 2024 Mar;36(12):e2209661. doi: 10.1002/adma.202209661. Epub 2023 May 10.
5
Microbial biofilms for electricity generation from water evaporation and power to wearables.
Nat Commun. 2022 Jul 28;13(1):4369. doi: 10.1038/s41467-022-32105-6.
6
Hydrovoltaic technology: from mechanism to applications.
Chem Soc Rev. 2022 Jun 20;51(12):4902-4927. doi: 10.1039/d1cs00778e.
7
Ionic Hydrogel for Efficient and Scalable Moisture-Electric Generation.
Adv Mater. 2022 May;34(21):e2200693. doi: 10.1002/adma.202200693. Epub 2022 Apr 24.
8
Nanofiber fabric based ion-gradient-enhanced moist-electric generator with a sustained voltage output of 1.1 volts.
Mater Horiz. 2021 Aug 1;8(8):2303-2309. doi: 10.1039/d1mh00565k. Epub 2021 Jun 29.
9
Bioinspired Hierarchical Nanofabric Electrode for Silicon Hydrovoltaic Device with Record Power Output.
ACS Nano. 2021 Apr 27;15(4):7472-7481. doi: 10.1021/acsnano.1c00891. Epub 2021 Apr 9.
10
Power generation from ambient humidity using protein nanowires.
Nature. 2020 Feb;578(7796):550-554. doi: 10.1038/s41586-020-2010-9. Epub 2020 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验