Suppr超能文献

CT纹理分析参数能否用作预测犬脾脏肿瘤恶性程度的影像生物标志物?

Can CT texture analysis parameters be used as imaging biomarkers for prediction of malignancy in canine splenic tumors?

作者信息

Choi Bo-Kwon, Park Seungjo, Lee Gahyun, Chang Dongwoo, Jeon Sunghoon, Choi Jihye

机构信息

College of Veterinary Medicine, Chonnam National University, Gwangju, Republic of Korea.

Haemaru Referral Animal Hospital, Seongnam, Republic of Korea.

出版信息

Vet Radiol Ultrasound. 2023 Mar;64(2):224-232. doi: 10.1111/vru.13175. Epub 2022 Oct 26.

Abstract

Splenic hemangiosarcoma has morphological similarities to benign nodular hyperplasia. Computed tomography (CT) texture analysis can analyze the texture of images that the naive human eye cannot detect. Recently, there have been attempts to incorporate CT texture analysis with artificial intelligence in human medicine. This retrospective, analytical design study aimed to assess the feasibility of CT texture analysis in splenic masses and investigate predictive biomarkers of splenic hemangiosarcoma in dogs. Parameters for dogs with hemangiosarcoma and nodular hyperplasia were compared, and an independent parameter that could differentiate between them was selected. Discriminant analysis was performed to assess the ability to discriminate the two splenic masses and compare the relative importance of the parameters. A total of 23 dogs were sampled, including 16 splenic nodular hyperplasia and seven hemangiosarcoma. In each dog, total 38 radiomic parameters were extracted from first-, second-, and higher-order matrices. Thirteen parameters had significant differences between hemangiosarcoma and nodular hyperplasia. Skewness in the first-order matrix and GLRLM_LGRE and GLZLM_ZLNU in the second, higher-order matrix were determined as independent parameters. A discriminant equation consisting of skewness, GLZLM_LGZE, and GLZLM_ZLNU was derived, and the cross-validation verification result showed an accuracy of 95.7%. Skewness was the most influential parameter for the discrimination of the two masses. The study results supported using CT texture analysis to help differentiate hemangiosarcoma from nodular hyperplasia in dogs. This new diagnostic approach can be used for developing future machine learning-based texture analysis tools.

摘要

脾血管肉瘤在形态学上与良性结节性增生相似。计算机断层扫描(CT)纹理分析可以分析肉眼无法检测到的图像纹理。最近,人们尝试将CT纹理分析与人工智能结合应用于人类医学。这项回顾性分析设计研究旨在评估CT纹理分析在脾脏肿块中的可行性,并研究犬脾血管肉瘤的预测生物标志物。比较了患有血管肉瘤和结节性增生的犬的参数,并选择了一个能够区分它们的独立参数。进行判别分析以评估区分两种脾脏肿块的能力,并比较参数的相对重要性。总共对23只犬进行了采样,包括16只脾结节性增生和7只血管肉瘤。在每只犬中,从一阶、二阶和高阶矩阵中提取了总共38个影像组学参数。血管肉瘤和结节性增生之间有13个参数存在显著差异。一阶矩阵中的偏度以及二阶高阶矩阵中的GLRLM_LGRE和GLZLM_ZLNU被确定为独立参数。推导了一个由偏度、GLZLM_LGZE和GLZLM_ZLNU组成的判别方程,交叉验证结果显示准确率为95.7%。偏度是区分这两种肿块最具影响力的参数。研究结果支持使用CT纹理分析来帮助区分犬的血管肉瘤和结节性增生。这种新的诊断方法可用于开发未来基于机器学习的纹理分析工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验