School of Materials Science and Engineering, Southeast University, Nanjing, 211189, China.
Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China.
Angew Chem Int Ed Engl. 2022 Dec 19;61(51):e202214244. doi: 10.1002/anie.202214244. Epub 2022 Nov 17.
A novel poly(phenazine-alt-pyromellitic anhydride) (PPPA) has been successfully designed and synthesized via a condensation polymerization strategy as promising cathode material in organic zinc-ion batteries. Electrochemical quartz crystal microbalance (EQCM), FTIR and XPS characterizations verify a reversible Zn -coordination mechanism in our PPPA cathode. Intriguingly, an ultrahigh Zn diffusion coefficient of 1.2×10 cm s was found in this large π-conjugated system, which is the highest one among all organic cathode materials for zinc-ion batteries. Theoretical calculations reveal the extended π-conjugated plane in our PPPA sample results in a significant reduction on energy gap, effectively accelerating intramolecular electron transfer during charge/discharge process. Our finding provides insights to achieve high zinc-ion transport kinetics by a design strategy on planar polymer system.
一种新型聚(苯并二氮杂萘-均苯四酸二酐)(PPPA)通过缩聚聚合策略成功设计和合成,作为有机锌离子电池有前途的阴极材料。电化学石英晶体微天平(EQCM)、FTIR 和 XPS 表征验证了我们的 PPPA 阴极中可逆的 Zn 配位机制。有趣的是,在这个大π共轭体系中发现了超高的 Zn 扩散系数 1.2×10 cm s ,这是所有有机锌离子电池阴极材料中最高的。理论计算表明,我们的 PPPA 样品中扩展的 π 共轭平面导致能隙显著降低,有效加速了充放电过程中的分子内电子转移。我们的发现通过平面聚合物体系的设计策略提供了实现高锌离子输运动力学的见解。