Suppr超能文献

人工智能支持颞下颌关节紊乱病的早期诊断:一项初步案例研究。

Artificial intelligence to support early diagnosis of temporomandibular disorders: A preliminary case study.

机构信息

Dipartimento di Scienze Mediche, Chirurgiche e Della Salute, University of Trieste, Trieste, Italy.

Department of Engineering and Architecture, University of Trieste, Trieste, Italy.

出版信息

J Oral Rehabil. 2023 Jan;50(1):31-38. doi: 10.1111/joor.13383. Epub 2022 Nov 3.

Abstract

BACKGROUND

Temporomandibular disorders (TMDs) are disabling conditions with a negative impact on the quality of life. Their diagnosis is a complex and multi-factorial process that should be conducted by experienced professionals, and most TMDs remain often undetected. Increasing the awareness of un-experienced dentists and supporting the early TMD recognition may help reduce this gap. Artificial intelligence (AI) allowing both to process natural language and to manage large knowledge bases could support the diagnostic process.

OBJECTIVE

In this work, we present the experience of an AI-based system for supporting non-expert dentists in early TMD recognition.

METHODS

The system was based on commercially available AI services. The prototype development involved a preliminary domain analysis and relevant literature identification, the implementation of the core cognitive computing services, the web interface and preliminary testing. Performance evaluation included a retrospective review of seven available clinical cases, together with the involvement of expert professionals for usability testing.

RESULTS

The system comprises one module providing possible diagnoses according to a list of symptoms, and a second one represented by a question and answer tool, based on natural language. We found that, even when using commercial services, the training guided by experts is a key factor and that, despite the generally positive feedback, the application's best target is untrained professionals.

CONCLUSION

We provided a preliminary proof of concept of the feasibility of implementing an AI-based system aimed to support non-specialists in the early identification of TMDs, possibly allowing a faster and more frequent referral to second-level medical centres. Our results showed that AI is a useful tool to improve TMD detection by facilitating a primary diagnosis.

摘要

背景

颞下颌关节紊乱病(TMDs)是一种使人丧失能力的疾病,对生活质量有负面影响。其诊断是一个复杂的多因素过程,应由经验丰富的专业人员进行,而大多数 TMD 往往未被发现。提高非专业牙医的意识并支持早期 TMD 识别可能有助于缩小这一差距。人工智能(AI)既可以处理自然语言,又可以管理大型知识库,可以支持诊断过程。

目的

在这项工作中,我们介绍了一种基于人工智能的系统,用于支持非专业牙医进行早期 TMD 识别的经验。

方法

该系统基于市售的人工智能服务。原型开发涉及初步的领域分析和相关文献的识别、核心认知计算服务的实现、网络界面和初步测试。性能评估包括对七个现有临床病例的回顾性审查,以及专家参与的可用性测试。

结果

该系统包括一个根据症状列表提供可能诊断的模块,以及一个基于自然语言的问答工具模块。我们发现,即使使用商业服务,专家指导的培训也是一个关键因素,而且尽管应用程序得到了普遍的积极反馈,但该应用程序的最佳目标是未经培训的专业人员。

结论

我们初步证明了实施基于人工智能的系统的可行性,该系统旨在支持非专业人员早期识别 TMDs,可能允许更快、更频繁地向二级医疗中心转诊。我们的结果表明,人工智能是一种有用的工具,可以通过促进初步诊断来提高 TMD 的检测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验