W. M. Keck Research Laboratory in Astrochemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
Department of Chemistry, University of Hawaii at Manoa, Honolulu, HI 96822, USA.
Phys Chem Chem Phys. 2023 Jan 4;25(2):936-953. doi: 10.1039/d2cp03543j.
We unravel, for the very first time, the formation pathways of hydroxyacetone (CHCOCHOH), methyl acetate (CHCOOCH), and 3-hydroxypropanal (HCOCHCHOH), as well as their enol tautomers within mixed ices of methanol (CHOH) and acetaldehyde (CHCHO) analogous to interstellar ices in the ISM exposed to ionizing radiation at ultralow temperatures of 5 K. Exploiting photoionization reflectron time-of-flight mass spectrometry (PI-ReToF-MS) and isotopically labeled ices, the reaction products were selectively photoionized allowing for isomer discrimination during the temperature-programmed desorption phase. Based on the distinct mass-to-charge ratios and ionization energies of the identified species, we reveal the formation pathways of hydroxyacetone (CHCOCHOH), methyl acetate (CHCOOCH), and 3-hydroxypropanal (HCOCHCHOH) radical-radical recombination reactions and of their enol tautomers (prop-1-ene-1,2-diol (CHC(OH)CHOH), prop-2-ene-1,2-diol (CHC(OH)CHOH), 1-methoxyethen-1-ol (CHOC(OH)CH) and prop-1-ene-1,3-diol (HOCHCHCHOH)) keto-enol tautomerization. To the best of our knowledge, 1-methoxyethen-1-ol (CHOC(OH)CH) and prop-1-ene-1,3-diol (HOCHCHCHOH) are experimentally identified for the first time. Our findings help to constrain the formation mechanism of hydroxyacetone and methyl acetate detected within star-forming regions and suggest that the hitherto astronomically unobserved isomer 3-hydroxypropanal and its enol tautomers represent promising candidates for future astronomical searches. These enol tautomers may contribute to the molecular synthesis of biologically relevant molecules in deep space due to their nucleophilic character and high reactivity.
我们首次揭示了羟基丙酮(CHCOCHOH)、乙酸甲酯(CHCOOCH)和 3-羟基丙醛(HCOCHCHOH),以及它们在甲醇(CHOH)和乙醛(CHCHO)混合冰中的烯醇互变异构体的形成途径,这些冰类似于星际云中的冰,在 5 K 的超低温度下暴露于电离辐射。利用光电离反射飞行时间质谱(PI-ReToF-MS)和同位素标记冰,我们选择性地对反应产物进行光电离,从而在程序升温脱附阶段实现异构体的区分。基于所鉴定物种的独特质荷比和电离能,我们揭示了羟基丙酮(CHCOCHOH)、乙酸甲酯(CHCOOCH)和 3-羟基丙醛(HCOCHCHOH)自由基-自由基重组反应的形成途径,以及它们的烯醇互变异构体(丙烯-1,2-二醇(CHC(OH)CHOH)、丙烯-1,2-二醇(CHC(OH)CHOH)、1-甲氧基乙烯-1-醇(CHOC(OH)CH)和丙烯-1,3-二醇(HOCHCHCHOH))的酮-烯醇互变异构化。据我们所知,1-甲氧基乙烯-1-醇(CHOC(OH)CH)和丙烯-1,3-二醇(HOCHCHCHOH)是首次在实验中被鉴定。我们的发现有助于约束在恒星形成区域中检测到的羟基丙酮和乙酸甲酯的形成机制,并表明迄今为止在天文学上未被观测到的异构体 3-羟基丙醛及其烯醇互变异构体是未来天文搜索的有前途的候选物。由于这些烯醇互变异构体具有亲核性和高反应性,它们可能有助于深空中生物相关分子的分子合成。