Department of Clinical Pharmacy, School of Pharmacy, University of Southern Californiagrid.42505.36, Los Angeles, California, USA.
Certara UK Ltd., Simcyp Division, Sheffield, United Kingdom.
Antimicrob Agents Chemother. 2022 Nov 15;66(11):e0110422. doi: 10.1128/aac.01104-22. Epub 2022 Oct 26.
Nontuberculous mycobacteria (NTM) are the pathogens of concern in people with cystic fibrosis (pwCF) due to their association with deterioration of lung function. Treatment requires the use of a multidrug combination regimen, creating the potential for drug-drug interactions (DDIs) with cystic fibrosis transmembrane conductance regulator (CFTR)-modulating therapies, including elexacaftor, tezacaftor, and ivacaftor (ETI), which are eliminated mainly through cytochrome P450 (CYP) 3A-mediated metabolism. An assessment of the DDI risk for ETI coadministered with NTM treatments, including rifabutin, clofazimine, and clarithromycin, is needed to provide appropriate guidance on dosing. The CYP3A-mediated DDIs between ETI and the NTM therapies rifabutin, clarithromycin, and clofazimine were evaluated using physiologically based pharmacokinetic (PBPK) modeling by incorporating demographic and physiological "system" data with drug physicochemical and parameters. Models were verified and then applied to predict untested scenarios to guide continuation of ETI during antibiotic treatment, using ivacaftor as the most sensitive CYP3A4 substrate. The predicted area under the concentration-time curve (AUC) ratios of ivacaftor when coadministered with rifabutin, clofazimine, or clarithromycin were 0.31, 2.98, and 9.64, respectively, suggesting moderate and strong interactions. The simulation predicted adjusted dosing regimens of ETI administered concomitantly with NTM treatments, which required delayed resumption of the standard dose of ETI once the NTM treatments were completed. The dosing transitions were determined based on the characteristics of the perpetrator drugs, including the mechanism of CYP3A modulation and their elimination half-lives. This study suggests increased doses of elexacaftor/tezacaftor/ivacaftor 200/100/450 mg in the morning and 100/50/375 mg in the evening when ETI is coadministered with rifabutin and reduced doses of elexacaftor/tezacaftor 200/100 mg every 48 h (q48h) and ivacaftor 150 mg daily or a dose of elexacaftor/tezacaftor/ivacaftor 200/100/150 mg q72h when coadministered with clofazimine or clarithromycin, respectively. Importantly, the PBPK simulations provide evidence in support of the use of treatments for NTM in pwCF receiving concomitant dose-adjusted ETI therapy.
非结核分枝杆菌(NTM)是囊性纤维化(pwCF)患者肺部功能恶化的病原体,因为它们与肺部功能恶化有关。治疗需要使用多种药物联合治疗方案,这可能会与囊性纤维化跨膜电导调节因子(CFTR)调节剂治疗药物(包括艾乐瑞卡他韦、泰他西普和依伐卡托)发生药物-药物相互作用(DDI),这些药物主要通过细胞色素 P450(CYP)3A 介导的代谢消除。需要评估艾乐瑞卡他韦与 NTM 治疗药物(包括利福布丁、氯法齐明和克拉霉素)联合用药时的 DDI 风险,为调整剂量提供适当的指导。通过将人口统计学和生理学“系统”数据与药物物理化学和参数相结合,使用基于生理的药代动力学(PBPK)模型评估了艾乐瑞卡他韦与利福布丁、克拉霉素和氯法齐明等 NTM 治疗药物之间的 CYP3A 介导的 DDI。对模型进行了验证,然后应用于预测未测试的情况,以指导在抗生素治疗期间继续使用艾乐瑞卡他韦治疗,以伊伐卡托作为最敏感的 CYP3A4 底物。当与利福布丁、氯法齐明或克拉霉素联合使用时,艾乐瑞卡他韦的预测 AUC 比值分别为 0.31、2.98 和 9.64,表明存在中度和强相互作用。模拟预测了在同时接受 NTM 治疗时,调整艾乐瑞卡他韦的给药方案,一旦 NTM 治疗完成,就需要延迟恢复艾乐瑞卡他韦的标准剂量。给药转换基于罪魁祸首药物的特性确定,包括 CYP3A 调节机制及其消除半衰期。这项研究表明,当艾乐瑞卡他韦与利福布丁合用时,早晨给予 200/100/450mg 艾乐瑞卡他韦/泰他西普/依伐卡托,晚上给予 100/50/375mg 艾乐瑞卡他韦/泰他西普/依伐卡托;当与氯法齐明或克拉霉素合用时,每天给予 150mg 依伐卡托或每 48 小时(q48h)给予 200/100mg 艾乐瑞卡他韦/泰他西普,艾乐瑞卡他韦/泰他西普/依伐卡托的剂量分别调整为 200/100/150mg q72h 和 200/100/150mg q72h。重要的是,PBPK 模拟提供了证据支持在接受艾乐瑞卡他韦剂量调整治疗的同时,为 pwCF 中的 NTM 治疗提供治疗。