Suppr超能文献

基于生理的药代动力学模型指导依非韦伦、泰诺福韦和艾维雷韦与抗生素联合治疗非结核分枝杆菌药物相互作用的管理

Physiologically Based Pharmacokinetic Modeling To Guide Management of Drug Interactions between Elexacaftor-Tezacaftor-Ivacaftor and Antibiotics for the Treatment of Nontuberculous Mycobacteria.

机构信息

Department of Clinical Pharmacy, School of Pharmacy, University of Southern Californiagrid.42505.36, Los Angeles, California, USA.

Certara UK Ltd., Simcyp Division, Sheffield, United Kingdom.

出版信息

Antimicrob Agents Chemother. 2022 Nov 15;66(11):e0110422. doi: 10.1128/aac.01104-22. Epub 2022 Oct 26.

Abstract

Nontuberculous mycobacteria (NTM) are the pathogens of concern in people with cystic fibrosis (pwCF) due to their association with deterioration of lung function. Treatment requires the use of a multidrug combination regimen, creating the potential for drug-drug interactions (DDIs) with cystic fibrosis transmembrane conductance regulator (CFTR)-modulating therapies, including elexacaftor, tezacaftor, and ivacaftor (ETI), which are eliminated mainly through cytochrome P450 (CYP) 3A-mediated metabolism. An assessment of the DDI risk for ETI coadministered with NTM treatments, including rifabutin, clofazimine, and clarithromycin, is needed to provide appropriate guidance on dosing. The CYP3A-mediated DDIs between ETI and the NTM therapies rifabutin, clarithromycin, and clofazimine were evaluated using physiologically based pharmacokinetic (PBPK) modeling by incorporating demographic and physiological "system" data with drug physicochemical and parameters. Models were verified and then applied to predict untested scenarios to guide continuation of ETI during antibiotic treatment, using ivacaftor as the most sensitive CYP3A4 substrate. The predicted area under the concentration-time curve (AUC) ratios of ivacaftor when coadministered with rifabutin, clofazimine, or clarithromycin were 0.31, 2.98, and 9.64, respectively, suggesting moderate and strong interactions. The simulation predicted adjusted dosing regimens of ETI administered concomitantly with NTM treatments, which required delayed resumption of the standard dose of ETI once the NTM treatments were completed. The dosing transitions were determined based on the characteristics of the perpetrator drugs, including the mechanism of CYP3A modulation and their elimination half-lives. This study suggests increased doses of elexacaftor/tezacaftor/ivacaftor 200/100/450 mg in the morning and 100/50/375 mg in the evening when ETI is coadministered with rifabutin and reduced doses of elexacaftor/tezacaftor 200/100 mg every 48 h (q48h) and ivacaftor 150 mg daily or a dose of elexacaftor/tezacaftor/ivacaftor 200/100/150 mg q72h when coadministered with clofazimine or clarithromycin, respectively. Importantly, the PBPK simulations provide evidence in support of the use of treatments for NTM in pwCF receiving concomitant dose-adjusted ETI therapy.

摘要

非结核分枝杆菌(NTM)是囊性纤维化(pwCF)患者肺部功能恶化的病原体,因为它们与肺部功能恶化有关。治疗需要使用多种药物联合治疗方案,这可能会与囊性纤维化跨膜电导调节因子(CFTR)调节剂治疗药物(包括艾乐瑞卡他韦、泰他西普和依伐卡托)发生药物-药物相互作用(DDI),这些药物主要通过细胞色素 P450(CYP)3A 介导的代谢消除。需要评估艾乐瑞卡他韦与 NTM 治疗药物(包括利福布丁、氯法齐明和克拉霉素)联合用药时的 DDI 风险,为调整剂量提供适当的指导。通过将人口统计学和生理学“系统”数据与药物物理化学和参数相结合,使用基于生理的药代动力学(PBPK)模型评估了艾乐瑞卡他韦与利福布丁、克拉霉素和氯法齐明等 NTM 治疗药物之间的 CYP3A 介导的 DDI。对模型进行了验证,然后应用于预测未测试的情况,以指导在抗生素治疗期间继续使用艾乐瑞卡他韦治疗,以伊伐卡托作为最敏感的 CYP3A4 底物。当与利福布丁、氯法齐明或克拉霉素联合使用时,艾乐瑞卡他韦的预测 AUC 比值分别为 0.31、2.98 和 9.64,表明存在中度和强相互作用。模拟预测了在同时接受 NTM 治疗时,调整艾乐瑞卡他韦的给药方案,一旦 NTM 治疗完成,就需要延迟恢复艾乐瑞卡他韦的标准剂量。给药转换基于罪魁祸首药物的特性确定,包括 CYP3A 调节机制及其消除半衰期。这项研究表明,当艾乐瑞卡他韦与利福布丁合用时,早晨给予 200/100/450mg 艾乐瑞卡他韦/泰他西普/依伐卡托,晚上给予 100/50/375mg 艾乐瑞卡他韦/泰他西普/依伐卡托;当与氯法齐明或克拉霉素合用时,每天给予 150mg 依伐卡托或每 48 小时(q48h)给予 200/100mg 艾乐瑞卡他韦/泰他西普,艾乐瑞卡他韦/泰他西普/依伐卡托的剂量分别调整为 200/100/150mg q72h 和 200/100/150mg q72h。重要的是,PBPK 模拟提供了证据支持在接受艾乐瑞卡他韦剂量调整治疗的同时,为 pwCF 中的 NTM 治疗提供治疗。

相似文献

4
Preliminary evidence for sustained efficacy of CFTR modulator therapy with concomitant rifabutin administration.
J Cyst Fibros. 2024 May;23(3):519-523. doi: 10.1016/j.jcf.2023.11.015. Epub 2023 Nov 30.

引用本文的文献

1
Antibiotic-resistant Acinetobacter baumannii can be killed by a combination of bacteriophages and complement.
Med Microbiol Immunol. 2025 Sep 2;214(1):40. doi: 10.1007/s00430-025-00852-0.
3
Progress of personalized medicine of cystic fibrosis in the times of efficient CFTR modulators.
Mol Cell Pediatr. 2025 May 5;12(1):6. doi: 10.1186/s40348-025-00194-0.
4
The complexities of elexacaftor/tezacaftor/ivacaftor therapeutic drug monitoring in a person with cystic fibrosis and pulmonary disease.
Eur Clin Respir J. 2025 Jan 24;12(1):2458341. doi: 10.1080/20018525.2025.2458341. eCollection 2025.
5
Highly Effective Modulator Therapy: Implications for the Microbial Landscape in Cystic Fibrosis.
Int J Mol Sci. 2024 Nov 5;25(22):11865. doi: 10.3390/ijms252211865.
6
of the cervical lymph nodes: A case report.
World J Clin Cases. 2024 Jul 6;12(19):3995-4002. doi: 10.12998/wjcc.v12.i19.3995.
8
Post-approval studies with the CFTR modulators Elexacaftor-Tezacaftor-Ivacaftor.
Front Pharmacol. 2023 Mar 21;14:1158207. doi: 10.3389/fphar.2023.1158207. eCollection 2023.

本文引用的文献

2
No drug-drug interaction between tezacaftor-ivacaftor and clofazimine: A case report.
J Cyst Fibros. 2022 Jan;21(1):e5-e7. doi: 10.1016/j.jcf.2021.10.003. Epub 2021 Oct 29.
3
Development of physiologically-based pharmacokinetic models for standard of care and newer tuberculosis drugs.
CPT Pharmacometrics Syst Pharmacol. 2021 Nov;10(11):1382-1395. doi: 10.1002/psp4.12707. Epub 2021 Oct 8.
5
Treatment of nontuberculous mycobacterial pulmonary disease: an official ATS/ERS/ESCMID/IDSA clinical practice guideline.
Eur Respir J. 2020 Jul 7;56(1). doi: 10.1183/13993003.00535-2020. Print 2020 Jul.
7
Prediction of Fraction Unbound in Microsomal and Hepatocyte Incubations: A Comparison of Methods across Industry Datasets.
Mol Pharm. 2019 Sep 3;16(9):4077-4085. doi: 10.1021/acs.molpharmaceut.9b00525. Epub 2019 Aug 8.
8
Pharmacokinetic and Drug-Drug Interaction Profiles of the Combination of Tezacaftor/Ivacaftor.
Clin Transl Sci. 2019 May;12(3):267-275. doi: 10.1111/cts.12610. Epub 2019 Jan 29.
9
Pharmacokinetic interaction between bedaquiline and clofazimine in patients with drug-resistant tuberculosis.
Int J Tuberc Lung Dis. 2018 Jan 1;22(1):26-29. doi: 10.5588/ijtld.17.0615. Epub 2017 Nov 16.
10
Evaluation of Clinical Drug Interaction Potential of Clofazimine Using Static and Dynamic Modeling Approaches.
Drug Metab Dispos. 2018 Jan;46(1):26-32. doi: 10.1124/dmd.117.077834. Epub 2017 Oct 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验