Suppr超能文献

微粒体和肝细胞孵育中游离分数的预测:行业数据集间方法的比较。

Prediction of Fraction Unbound in Microsomal and Hepatocyte Incubations: A Comparison of Methods across Industry Datasets.

机构信息

DMPK, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D , AstraZeneca , Gothenburg SE-43183 , Sweden.

Pfizer Inc. , Groton , Connecticut 06340 , United States.

出版信息

Mol Pharm. 2019 Sep 3;16(9):4077-4085. doi: 10.1021/acs.molpharmaceut.9b00525. Epub 2019 Aug 8.

Abstract

The fraction unbound in the incubation, , is an important parameter to consider in the evaluation of intrinsic clearance measurements performed in hepatocytes or microsomes. Reliable estimates of based on a compound's structure have the potential to positively impact the screening timelines in drug discovery. Previous works suggested that is primarily driven by passive processes and can be described using physicochemical properties such as lipophilicity and the protonation state of the molecule. While models based on these principles proved predictive in relatively small datasets that included marketed drugs, their applicability domain has not been extensively explored. The work presented here from the ADME discussion group (part of the International Consortium for Innovation through Quality in Pharmaceutical Development, the IQ consortium) describes the accuracy of these models in large proprietary datasets that include several thousand of compounds across chemical space. Overall, the models do well for compounds with low lipophilicity. In other words, the equations correctly predict that is, in general, above 0.5 for compounds with a calculated logP of less than 3. When applied to lipophilic compounds, the models failed to produce quantitatively accurate predictions of , with a high risk of underestimating binding properties. These models can, therefore, be used quantitatively for less lipophilic compounds. On the other hand, internal machine-learning models using a company's own proprietary dataset also predict compounds with higher lipophilicity reasonably well. Additionally, the data shown indicate that microsomal binding is, in general, a good proxy for hepatocyte binding.

摘要

在孵育中未结合的分数 ,是评估在肝细胞或微粒体中进行的内在清除率测量时需要考虑的一个重要参数。基于化合物结构可靠估计 ,有可能积极影响药物发现中的筛选时间线。以前的工作表明 主要由被动过程驱动,可以用理化性质(如亲脂性和分子的质子化状态)来描述。虽然基于这些原理的模型在包括上市药物在内的相对较小的数据集上证明了具有预测性,但它们的适用域尚未得到广泛探索。这里介绍的来自 ADME 讨论组(国际药品质量创新联盟的一部分,IQ 联盟)的工作描述了这些模型在包括化学空间中数千种化合物的大型专有数据集上的准确性。总的来说,这些模型在低亲脂性化合物上表现良好。换句话说,这些方程正确地预测到,对于计算的 logP 小于 3 的化合物, 通常大于 0.5。当应用于亲脂性化合物时,这些模型未能对 进行定量准确的预测,存在高估结合特性的高风险。因此,这些模型可以用于定量评估疏水性较低的化合物。另一方面,使用公司自己的专有数据集的内部机器学习模型也可以很好地预测疏水性较高的化合物。此外,所示的数据表明,微粒体结合通常是肝细胞结合的良好替代物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验